opus/dnn/torch/osce/create_testvectors.py
2023-12-20 03:42:44 -05:00

165 lines
6.5 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import torch
import numpy as np
from models import model_dict
from utils import endoscopy
parser = argparse.ArgumentParser()
parser.add_argument('checkpoint_path', type=str, help='path to folder containing checkpoints "lace_checkpoint.pth" and nolace_checkpoint.pth"')
parser.add_argument('output_folder', type=str, help='output folder for testvectors')
parser.add_argument('--debug', action='store_true', help='add debug output to output folder')
def create_adaconv_testvector(prefix, adaconv, num_frames, debug=False):
feature_dim = adaconv.feature_dim
in_channels = adaconv.in_channels
out_channels = adaconv.out_channels
frame_size = adaconv.frame_size
features = torch.randn((1, num_frames, feature_dim))
x_in = torch.randn((1, in_channels, num_frames * frame_size))
x_out = adaconv(x_in, features, debug=debug)
features = features[0].detach().numpy()
x_in = x_in[0].reshape(in_channels, num_frames, frame_size).permute(1, 0, 2).detach().numpy()
x_out = x_out[0].reshape(out_channels, num_frames, frame_size).permute(1, 0, 2).detach().numpy()
features.tofile(prefix + '_features.f32')
x_in.tofile(prefix + '_x_in.f32')
x_out.tofile(prefix + '_x_out.f32')
def create_adacomb_testvector(prefix, adacomb, num_frames, debug=False):
feature_dim = adacomb.feature_dim
in_channels = 1
frame_size = adacomb.frame_size
features = torch.randn((1, num_frames, feature_dim))
x_in = torch.randn((1, in_channels, num_frames * frame_size))
p_in = torch.randint(adacomb.kernel_size, 250, (1, num_frames))
x_out = adacomb(x_in, features, p_in, debug=debug)
features = features[0].detach().numpy()
x_in = x_in[0].permute(1, 0).detach().numpy()
p_in = p_in[0].detach().numpy().astype(np.int32)
x_out = x_out[0].permute(1, 0).detach().numpy()
features.tofile(prefix + '_features.f32')
x_in.tofile(prefix + '_x_in.f32')
p_in.tofile(prefix + '_p_in.s32')
x_out.tofile(prefix + '_x_out.f32')
def create_adashape_testvector(prefix, adashape, num_frames):
feature_dim = adashape.feature_dim
frame_size = adashape.frame_size
features = torch.randn((1, num_frames, feature_dim))
x_in = torch.randn((1, 1, num_frames * frame_size))
x_out = adashape(x_in, features)
features = features[0].detach().numpy()
x_in = x_in.flatten().detach().numpy()
x_out = x_out.flatten().detach().numpy()
features.tofile(prefix + '_features.f32')
x_in.tofile(prefix + '_x_in.f32')
x_out.tofile(prefix + '_x_out.f32')
def create_feature_net_testvector(prefix, model, num_frames):
num_features = model.num_features
num_subframes = 4 * num_frames
input_features = torch.randn((1, num_subframes, num_features))
periods = torch.randint(32, 300, (1, num_subframes))
numbits = model.numbits_range[0] + torch.rand((1, num_frames, 2)) * (model.numbits_range[1] - model.numbits_range[0])
pembed = model.pitch_embedding(periods)
nembed = torch.repeat_interleave(model.numbits_embedding(numbits).flatten(2), 4, dim=1)
full_features = torch.cat((input_features, pembed, nembed), dim=-1)
cf = model.feature_net(full_features)
input_features.float().numpy().tofile(prefix + "_in_features.f32")
periods.numpy().astype(np.int32).tofile(prefix + "_periods.s32")
numbits.float().numpy().tofile(prefix + "_numbits.f32")
full_features.detach().numpy().tofile(prefix + "_full_features.f32")
cf.detach().numpy().tofile(prefix + "_out_features.f32")
if __name__ == "__main__":
args = parser.parse_args()
os.makedirs(args.output_folder, exist_ok=True)
lace_checkpoint = torch.load(os.path.join(args.checkpoint_path, "lace_checkpoint.pth"), map_location='cpu')
nolace_checkpoint = torch.load(os.path.join(args.checkpoint_path, "nolace_checkpoint.pth"), map_location='cpu')
lace = model_dict['lace'](**lace_checkpoint['setup']['model']['kwargs'])
nolace = model_dict['nolace'](**nolace_checkpoint['setup']['model']['kwargs'])
lace.load_state_dict(lace_checkpoint['state_dict'])
nolace.load_state_dict(nolace_checkpoint['state_dict'])
if args.debug:
endoscopy.init(args.output_folder)
# lace af1, 1 input channel, 1 output channel
create_adaconv_testvector(os.path.join(args.output_folder, "lace_af1"), lace.af1, 5, debug=args.debug)
# nolace af1, 1 input channel, 2 output channels
create_adaconv_testvector(os.path.join(args.output_folder, "nolace_af1"), nolace.af1, 5, debug=args.debug)
# nolace af4, 2 input channel, 1 output channels
create_adaconv_testvector(os.path.join(args.output_folder, "nolace_af4"), nolace.af4, 5, debug=args.debug)
# nolace af2, 2 input channel, 2 output channels
create_adaconv_testvector(os.path.join(args.output_folder, "nolace_af2"), nolace.af2, 5, debug=args.debug)
# lace cf1
create_adacomb_testvector(os.path.join(args.output_folder, "lace_cf1"), lace.cf1, 5, debug=args.debug)
# nolace tdshape1
create_adashape_testvector(os.path.join(args.output_folder, "nolace_tdshape1"), nolace.tdshape1, 5)
# lace feature net
create_feature_net_testvector(os.path.join(args.output_folder, 'lace'), lace, 5)
if args.debug:
endoscopy.close()