
This patch makes all symbols conditional on whether or not there's enough space left in the buffer to code them, and eliminates much of the redundancy in the side information. A summary of the major changes: * The isTransient flag is moved up to before the the coarse energy. If there are not enough bits to code the coarse energy, the flag would get forced to 0, meaning what energy values were coded would get interpreted incorrectly. This might not be the end of the world, and I'd be willing to move it back given a compelling argument. * Coarse energy switches coding schemes when there are less than 15 bits left in the packet: - With at least 2 bits remaining, the change in energy is forced to the range [-1...1] and coded with 1 bit (for 0) or 2 bits (for +/-1). - With only 1 bit remaining, the change in energy is forced to the range [-1...0] and coded with one bit. - If there is less than 1 bit remaining, the change in energy is forced to -1. This effectively low-passes bands whose energy is consistently starved; this might be undesirable, but letting the default be zero is unstable, which is worse. * The tf_select flag gets moved back after the per-band tf_res flags again, and is now skipped entirely when none of the tf_res flags are set, and the default value is the same for either alternative. * dynalloc boosting is now limited so that it stops once it's given a band all the remaining bits in the frame, or when it hits the "stupid cap" of (64<<LM)*(C<<BITRES) used during allocation. * If dynalloc boosing has allocated all the remaining bits in the frame, the alloc trim parameter does not get encoded (it would have no effect). * The intensity stereo offset is now limited to the range [start...codedBands], and thus doesn't get coded until after all of the skip decisions. Some space is reserved for it up front, and gradually given back as each band is skipped. * The dual stereo flag is coded only if intensity>start, since otherwise it has no effect. It is now coded after the intensity flag. * The space reserved for the final skip flag, the intensity stereo offset, and the dual stereo flag is now redistributed to all bands equally if it is unused. Before, the skip flag's bit was given to the band that stopped skipping without it (usually a dynalloc boosted band). In order to enable simple interaction between VBR and these packet-size enforced limits, many of which are encountered before VBR is run, the maximum packet size VBR will allow is computed at the beginning of the encoding function, and the buffer reduced to that size immediately. Later, when it is time to make the VBR decision, the minimum packet size is set high enough to ensure that no decision made thus far will have been affected by the packet size. As long as this is smaller than the up-front maximum, all of the encoder's decisions will remain in-sync with the decoder. If it is larger than the up-front maximum, the packet size is kept at that maximum, also ensuring sync. The minimum used now is slightly larger than it used to be, because it also includes the bits added for dynalloc boosting. Such boosting is shut off by the encoder at low rates, and so should not cause any serious issues at the rates where we would actually run out of room before compute_allocation().
517 lines
16 KiB
C
517 lines
16 KiB
C
/* Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Written by Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
- Neither the name of the Xiph.org Foundation nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "modes.h"
|
|
#include "cwrs.h"
|
|
#include "arch.h"
|
|
#include "os_support.h"
|
|
|
|
#include "entcode.h"
|
|
#include "rate.h"
|
|
|
|
|
|
static const unsigned char LOG2_FRAC_TABLE[24]={
|
|
0,
|
|
8,13,
|
|
16,19,21,23,
|
|
24,26,27,28,29,30,31,32,
|
|
32,33,34,34,35,36,36,37,37
|
|
};
|
|
|
|
#ifndef STATIC_MODES
|
|
|
|
/*Determines if V(N,K) fits in a 32-bit unsigned integer.
|
|
N and K are themselves limited to 15 bits.*/
|
|
static int fits_in32(int _n, int _k)
|
|
{
|
|
static const celt_int16 maxN[15] = {
|
|
32767, 32767, 32767, 1476, 283, 109, 60, 40,
|
|
29, 24, 20, 18, 16, 14, 13};
|
|
static const celt_int16 maxK[15] = {
|
|
32767, 32767, 32767, 32767, 1172, 238, 95, 53,
|
|
36, 27, 22, 18, 16, 15, 13};
|
|
if (_n>=14)
|
|
{
|
|
if (_k>=14)
|
|
return 0;
|
|
else
|
|
return _n <= maxN[_k];
|
|
} else {
|
|
return _k <= maxK[_n];
|
|
}
|
|
}
|
|
|
|
void compute_pulse_cache(CELTMode *m, int LM)
|
|
{
|
|
int i;
|
|
int curr=0;
|
|
int nbEntries=0;
|
|
int entryN[100], entryK[100], entryI[100];
|
|
const celt_int16 *eBands = m->eBands;
|
|
PulseCache *cache = &m->cache;
|
|
celt_int16 *cindex;
|
|
unsigned char *bits;
|
|
|
|
cindex = celt_alloc(sizeof(cache->index[0])*m->nbEBands*(LM+2));
|
|
cache->index = cindex;
|
|
|
|
/* Scan for all unique band sizes */
|
|
for (i=0;i<=LM+1;i++)
|
|
{
|
|
int j;
|
|
for (j=0;j<m->nbEBands;j++)
|
|
{
|
|
int k;
|
|
int N = (eBands[j+1]-eBands[j])<<i>>1;
|
|
cindex[i*m->nbEBands+j] = -1;
|
|
/* Find other bands that have the same size */
|
|
for (k=0;k<=i;k++)
|
|
{
|
|
int n;
|
|
for (n=0;n<m->nbEBands && (k!=i || n<j);n++)
|
|
{
|
|
if (N == (eBands[n+1]-eBands[n])<<k>>1)
|
|
{
|
|
cindex[i*m->nbEBands+j] = cindex[k*m->nbEBands+n];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (cache->index[i*m->nbEBands+j] == -1 && N!=0)
|
|
{
|
|
int K;
|
|
entryN[nbEntries] = N;
|
|
K = 0;
|
|
while (fits_in32(N,get_pulses(K+1)) && K<MAX_PSEUDO)
|
|
K++;
|
|
entryK[nbEntries] = K;
|
|
cindex[i*m->nbEBands+j] = curr;
|
|
entryI[nbEntries] = curr;
|
|
|
|
curr += K+1;
|
|
nbEntries++;
|
|
}
|
|
}
|
|
}
|
|
bits = celt_alloc(sizeof(unsigned char)*curr);
|
|
cache->bits = bits;
|
|
cache->size = curr;
|
|
/* Compute the cache for all unique sizes */
|
|
for (i=0;i<nbEntries;i++)
|
|
{
|
|
int j;
|
|
unsigned char *ptr = bits+entryI[i];
|
|
celt_int16 tmp[MAX_PULSES+1];
|
|
get_required_bits(tmp, entryN[i], get_pulses(entryK[i]), BITRES);
|
|
for (j=1;j<=entryK[i];j++)
|
|
ptr[j] = tmp[get_pulses(j)]-1;
|
|
ptr[0] = entryK[i];
|
|
}
|
|
}
|
|
|
|
#endif /* !STATIC_MODES */
|
|
|
|
|
|
#define ALLOC_STEPS 6
|
|
|
|
static inline int interp_bits2pulses(const CELTMode *m, int start, int end, int skip_start,
|
|
const int *bits1, const int *bits2, const int *thresh, int total, int skip_rsv,
|
|
int *intensity, int intensity_rsv, int *dual_stereo, int dual_stereo_rsv, int *bits,
|
|
int *ebits, int *fine_priority, int len, int _C, int LM, void *ec, int encode, int prev)
|
|
{
|
|
int psum;
|
|
int lo, hi;
|
|
int i, j;
|
|
int logM;
|
|
const int C = CHANNELS(_C);
|
|
int stereo;
|
|
int codedBands=-1;
|
|
int alloc_floor;
|
|
int left, percoeff;
|
|
int done;
|
|
int balance;
|
|
SAVE_STACK;
|
|
|
|
alloc_floor = C<<BITRES;
|
|
stereo = C>1;
|
|
|
|
logM = LM<<BITRES;
|
|
lo = 0;
|
|
hi = 1<<ALLOC_STEPS;
|
|
for (i=0;i<ALLOC_STEPS;i++)
|
|
{
|
|
int mid = (lo+hi)>>1;
|
|
psum = 0;
|
|
done = 0;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int tmp = bits1[j] + (mid*bits2[j]>>ALLOC_STEPS);
|
|
if (tmp >= thresh[j] || done)
|
|
{
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
psum += IMIN(tmp, 64*C<<BITRES<<LM);
|
|
} else {
|
|
if (tmp >= alloc_floor)
|
|
psum += alloc_floor;
|
|
}
|
|
}
|
|
if (psum > total)
|
|
hi = mid;
|
|
else
|
|
lo = mid;
|
|
}
|
|
psum = 0;
|
|
/*printf ("interp bisection gave %d\n", lo);*/
|
|
done = 0;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int tmp = bits1[j] + (lo*bits2[j]>>ALLOC_STEPS);
|
|
if (tmp < thresh[j] && !done)
|
|
{
|
|
if (tmp >= alloc_floor)
|
|
tmp = alloc_floor;
|
|
else
|
|
tmp = 0;
|
|
} else
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
tmp = IMIN(tmp, 64*C<<BITRES<<LM);
|
|
bits[j] = tmp;
|
|
psum += tmp;
|
|
}
|
|
|
|
/* Decide which bands to skip, working backwards from the end. */
|
|
for (codedBands=end;;codedBands--)
|
|
{
|
|
int band_width;
|
|
int band_bits;
|
|
int rem;
|
|
j = codedBands-1;
|
|
/* Never skip the first band, nor a band that has been boosted by
|
|
dynalloc.
|
|
In the first case, we'd be coding a bit to signal we're going to waste
|
|
all the other bits.
|
|
In the second case, we'd be coding a bit to redistribute all the bits
|
|
we just signaled should be cocentrated in this band. */
|
|
if (j<=skip_start)
|
|
{
|
|
/* Give the bit we reserved to end skipping back. */
|
|
total += skip_rsv;
|
|
break;
|
|
}
|
|
/*Figure out how many left-over bits we would be adding to this band.
|
|
This can include bits we've stolen back from higher, skipped bands.*/
|
|
left = total-psum;
|
|
percoeff = left/(m->eBands[codedBands]-m->eBands[start]);
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
rem = IMAX(left-(m->eBands[j]-m->eBands[start]),0);
|
|
band_width = m->eBands[codedBands]-m->eBands[j];
|
|
band_bits = bits[j] + percoeff*band_width + rem;
|
|
/*Only code a skip decision if we're above the threshold for this band.
|
|
Otherwise it is force-skipped.
|
|
This ensures that we have enough bits to code the skip flag.*/
|
|
if (band_bits >= IMAX(thresh[j], alloc_floor+(1<<BITRES)))
|
|
{
|
|
if (encode)
|
|
{
|
|
/*This if() block is the only part of the allocation function that
|
|
is not a mandatory part of the bitstream: any bands we choose to
|
|
skip here must be explicitly signaled.*/
|
|
/*Choose a threshold with some hysteresis to keep bands from
|
|
fluctuating in and out.*/
|
|
if (band_bits > ((j<prev?7:9)*band_width<<LM<<BITRES)>>4)
|
|
{
|
|
ec_enc_bit_logp((ec_enc *)ec, 1, 1);
|
|
break;
|
|
}
|
|
ec_enc_bit_logp((ec_enc *)ec, 0, 1);
|
|
} else if (ec_dec_bit_logp((ec_dec *)ec, 1)) {
|
|
break;
|
|
}
|
|
/*We used a bit to skip this band.*/
|
|
psum += 1<<BITRES;
|
|
band_bits -= 1<<BITRES;
|
|
}
|
|
/*Reclaim the bits originally allocated to this band.*/
|
|
psum -= bits[j]+intensity_rsv;
|
|
if (intensity_rsv > 0)
|
|
intensity_rsv = LOG2_FRAC_TABLE[j-start];
|
|
psum += intensity_rsv;
|
|
if (band_bits >= alloc_floor)
|
|
{
|
|
/*If we have enough for a fine energy bit per channel, use it.*/
|
|
psum += alloc_floor;
|
|
bits[j] = alloc_floor;
|
|
} else {
|
|
/*Otherwise this band gets nothing at all.*/
|
|
bits[j] = 0;
|
|
}
|
|
}
|
|
|
|
celt_assert(codedBands > start);
|
|
/* Code the intensity and dual stereo parameters. */
|
|
if (intensity_rsv > 0)
|
|
{
|
|
if (encode)
|
|
{
|
|
*intensity = IMIN(*intensity, codedBands);
|
|
ec_enc_uint((ec_enc *)ec, *intensity-start, codedBands+1-start);
|
|
}
|
|
else
|
|
*intensity = start+ec_dec_uint((ec_dec *)ec, codedBands+1-start);
|
|
}
|
|
else
|
|
*intensity = 0;
|
|
if (*intensity <= start)
|
|
{
|
|
total += dual_stereo_rsv;
|
|
dual_stereo_rsv = 0;
|
|
}
|
|
if (dual_stereo_rsv > 0)
|
|
{
|
|
if (encode)
|
|
ec_enc_bit_logp((ec_enc *)ec, *dual_stereo, 1);
|
|
else
|
|
*dual_stereo = ec_dec_bit_logp((ec_dec *)ec, 1);
|
|
}
|
|
else
|
|
*dual_stereo = 0;
|
|
|
|
/* Allocate the remaining bits */
|
|
left = total-psum;
|
|
percoeff = left/(m->eBands[codedBands]-m->eBands[start]);
|
|
left -= (m->eBands[codedBands]-m->eBands[start])*percoeff;
|
|
for (j=start;j<codedBands;j++)
|
|
bits[j] += percoeff*(m->eBands[j+1]-m->eBands[j]);
|
|
for (j=start;j<codedBands;j++)
|
|
{
|
|
int tmp = IMIN(left, m->eBands[j+1]-m->eBands[j]);
|
|
bits[j] += tmp;
|
|
left -= tmp;
|
|
}
|
|
/*for (j=0;j<end;j++)printf("%d ", bits[j]);printf("\n");*/
|
|
|
|
balance = 0;
|
|
for (j=start;j<codedBands;j++)
|
|
{
|
|
int N0, N, den;
|
|
int offset;
|
|
int NClogN;
|
|
|
|
celt_assert(bits[j] >= 0);
|
|
N0 = m->eBands[j+1]-m->eBands[j];
|
|
N=N0<<LM;
|
|
|
|
if (N>1)
|
|
{
|
|
NClogN = N*C*(m->logN[j] + logM);
|
|
|
|
/* Compensate for the extra DoF in stereo */
|
|
den=(C*N+ ((C==2 && N>2) ? 1 : 0));
|
|
|
|
/* Offset for the number of fine bits by log2(N)/2 + FINE_OFFSET
|
|
compared to their "fair share" of total/N */
|
|
offset = (NClogN>>1)-N*C*FINE_OFFSET;
|
|
|
|
/* N=2 is the only point that doesn't match the curve */
|
|
if (N==2)
|
|
offset += N*C<<BITRES>>2;
|
|
|
|
/* Changing the offset for allocating the second and third
|
|
fine energy bit */
|
|
if (bits[j] + offset < den*2<<BITRES)
|
|
offset += NClogN>>2;
|
|
else if (bits[j] + offset < den*3<<BITRES)
|
|
offset += NClogN>>3;
|
|
|
|
/* Divide with rounding */
|
|
ebits[j] = IMAX(0, (bits[j] + offset + (den<<(BITRES-1))) / (den<<BITRES));
|
|
|
|
/* Make sure not to bust */
|
|
if (C*ebits[j] > (bits[j]>>BITRES))
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
|
|
/* More than 8 is useless because that's about as far as PVQ can go */
|
|
if (ebits[j]>8)
|
|
ebits[j]=8;
|
|
|
|
/* If we rounded down or capped this band, make it a candidate for the
|
|
final fine energy pass */
|
|
fine_priority[j] = ebits[j]*(den<<BITRES) >= bits[j]+offset;
|
|
|
|
} else {
|
|
/* For N=1, all bits go to fine energy except for a single sign bit */
|
|
ebits[j] = IMIN(IMAX(0,(bits[j] >> stereo >> BITRES)-1),8);
|
|
fine_priority[j] = (ebits[j]+1)*C<<BITRES >= (bits[j]-balance);
|
|
/* N=1 bands can't take advantage of the re-balancing in
|
|
quant_all_bands() because they don't have shape, only fine energy.
|
|
Instead, do the re-balancing here.*/
|
|
balance = IMAX(0,bits[j] - ((ebits[j]+1)*C<<BITRES));
|
|
if (j+1<codedBands)
|
|
{
|
|
bits[j] -= balance;
|
|
bits[j+1] += balance;
|
|
}
|
|
}
|
|
|
|
/* The other bits are assigned to PVQ */
|
|
bits[j] -= C*ebits[j]<<BITRES;
|
|
celt_assert(bits[j] >= 0);
|
|
celt_assert(ebits[j] >= 0);
|
|
}
|
|
/* The skipped bands use all their bits for fine energy. */
|
|
for (;j<end;j++)
|
|
{
|
|
ebits[j] = bits[j] >> stereo >> BITRES;
|
|
celt_assert(C*ebits[j]<<BITRES == bits[j]);
|
|
bits[j] = 0;
|
|
fine_priority[j] = ebits[j]<1;
|
|
}
|
|
RESTORE_STACK;
|
|
return codedBands;
|
|
}
|
|
|
|
int compute_allocation(const CELTMode *m, int start, int end, const int *offsets, int alloc_trim, int *intensity, int *dual_stereo,
|
|
int total, int *pulses, int *ebits, int *fine_priority, int _C, int LM, void *ec, int encode, int prev)
|
|
{
|
|
int lo, hi, len, j;
|
|
const int C = CHANNELS(_C);
|
|
int codedBands;
|
|
int skip_start;
|
|
int skip_rsv;
|
|
int intensity_rsv;
|
|
int dual_stereo_rsv;
|
|
VARDECL(int, bits1);
|
|
VARDECL(int, bits2);
|
|
VARDECL(int, thresh);
|
|
VARDECL(int, trim_offset);
|
|
SAVE_STACK;
|
|
|
|
total = IMAX(total, 0);
|
|
len = m->nbEBands;
|
|
skip_start = start;
|
|
/* Reserve a bit to signal the end of manually skipped bands. */
|
|
skip_rsv = total >= 1<<BITRES ? 1<<BITRES : 0;
|
|
total -= skip_rsv;
|
|
/* Reserve bits for the intensity and dual stereo parameters. */
|
|
intensity_rsv = dual_stereo_rsv = 0;
|
|
if (C==2)
|
|
{
|
|
intensity_rsv = LOG2_FRAC_TABLE[end-start];
|
|
if (intensity_rsv>total)
|
|
intensity_rsv = 0;
|
|
else
|
|
{
|
|
total -= intensity_rsv;
|
|
dual_stereo_rsv = total>=1<<BITRES ? 1<<BITRES : 0;
|
|
total -= dual_stereo_rsv;
|
|
}
|
|
}
|
|
ALLOC(bits1, len, int);
|
|
ALLOC(bits2, len, int);
|
|
ALLOC(thresh, len, int);
|
|
ALLOC(trim_offset, len, int);
|
|
|
|
for (j=start;j<end;j++)
|
|
{
|
|
/* Below this threshold, we're sure not to allocate any PVQ bits */
|
|
thresh[j] = IMAX((C)<<BITRES, (3*(m->eBands[j+1]-m->eBands[j])<<LM<<BITRES)>>4);
|
|
/* Tilt of the allocation curve */
|
|
trim_offset[j] = C*(m->eBands[j+1]-m->eBands[j])*(alloc_trim-5-LM)*(m->nbEBands-j-1)
|
|
<<(LM+BITRES)>>6;
|
|
/* Giving less resolution to single-coefficient bands because they get
|
|
more benefit from having one coarse value per coefficient*/
|
|
if ((m->eBands[j+1]-m->eBands[j])<<LM==1)
|
|
trim_offset[j] -= C<<BITRES;
|
|
}
|
|
lo = 1;
|
|
hi = m->nbAllocVectors - 2;
|
|
do
|
|
{
|
|
int done = 0;
|
|
int psum = 0;
|
|
int mid = (lo+hi) >> 1;
|
|
for (j=end;j-->start;)
|
|
{
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
bits1[j] = C*N*m->allocVectors[mid*len+j]<<LM>>2;
|
|
if (bits1[j] > 0)
|
|
bits1[j] = IMAX(0, bits1[j] + trim_offset[j]);
|
|
bits1[j] += offsets[j];
|
|
if (bits1[j] >= thresh[j] || done)
|
|
{
|
|
done = 1;
|
|
/* Don't allocate more than we can actually use */
|
|
psum += IMIN(bits1[j], 64*C<<BITRES<<LM);
|
|
} else {
|
|
if (bits1[j] >= C<<BITRES)
|
|
psum += C<<BITRES;
|
|
}
|
|
}
|
|
if (psum > total)
|
|
hi = mid - 1;
|
|
else
|
|
lo = mid + 1;
|
|
/*printf ("lo = %d, hi = %d\n", lo, hi);*/
|
|
}
|
|
while (lo <= hi);
|
|
hi = lo--;
|
|
/*printf ("interp between %d and %d\n", lo, hi);*/
|
|
for (j=start;j<end;j++)
|
|
{
|
|
int N = m->eBands[j+1]-m->eBands[j];
|
|
bits1[j] = C*N*m->allocVectors[lo*len+j]<<LM>>2;
|
|
bits2[j] = C*N*m->allocVectors[hi*len+j]<<LM>>2;
|
|
if (bits1[j] > 0)
|
|
bits1[j] = IMAX(0, bits1[j] + trim_offset[j]);
|
|
if (bits2[j] > 0)
|
|
bits2[j] = IMAX(0, bits2[j] + trim_offset[j]);
|
|
if (lo > 0)
|
|
bits1[j] += offsets[j];
|
|
bits2[j] += offsets[j];
|
|
if (offsets[j]>0)
|
|
skip_start = j;
|
|
bits2[j] -= bits1[j];
|
|
}
|
|
codedBands = interp_bits2pulses(m, start, end, skip_start, bits1, bits2, thresh,
|
|
total, skip_rsv, intensity, intensity_rsv, dual_stereo, dual_stereo_rsv,
|
|
pulses, ebits, fine_priority, len, C, LM, ec, encode, prev);
|
|
RESTORE_STACK;
|
|
return codedBands;
|
|
}
|
|
|