opus/dnn/torch/weight-exchange/wexchange/tf/tf.py
2023-07-22 14:55:41 -07:00

198 lines
No EOL
6.5 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import tensorflow as tf
import numpy as np
from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer
def dump_tf_gru_weights(where, gru, name=None, input_sparse=False, dotp=False):
assert gru.activation == tf.keras.activations.tanh
assert gru.recurrent_activation == tf.keras.activations.sigmoid
assert gru.reset_after == True
w_ih = gru.weights[0].numpy().transpose().copy()
w_hh = gru.weights[1].numpy().transpose().copy()
b_ih = gru.weights[2].numpy()[0].copy()
b_hh = gru.weights[2].numpy()[1].copy()
if isinstance(where, CWriter):
return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, 'TANH', format='tf', reset_after=1, input_sparse=input_sparse, dotp=dotp)
else:
os.makedirs(where, exist_ok=True)
# zrn => rzn
N = w_ih.shape[0] // 3
for x in [w_ih, w_hh, b_ih, b_hh]:
tmp = x[0:N].copy()
x[0:N] = x[N:2*N]
x[N:2*N] = tmp
np.save(os.path.join(where, 'weight_ih_rzn.npy'), w_ih)
np.save(os.path.join(where, 'weight_hh_rzn.npy'), w_hh)
np.save(os.path.join(where, 'bias_ih_rzn.npy'), b_ih)
np.save(os.path.join(where, 'bias_hh_rzn.npy'), b_hh)
def load_tf_gru_weights(path, gru):
assert gru.activation == tf.keras.activations.tanh
assert gru.recurrent_activation == tf.keras.activations.sigmoid
assert gru.reset_after == True
w_ih = np.load(os.path.join(path, 'weight_ih_rzn.npy'))
w_hh = np.load(os.path.join(path, 'weight_hh_rzn.npy'))
b_ih = np.load(os.path.join(path, 'bias_ih_rzn.npy'))
b_hh = np.load(os.path.join(path, 'bias_hh_rzn.npy'))
# rzn => zrn
N = w_ih.shape[0] // 3
for x in [w_ih, w_hh, b_ih, b_hh]:
tmp = x[0:N].copy()
x[0:N] = x[N:2*N]
x[N:2*N] = tmp
gru.weights[0].assign(tf.convert_to_tensor(w_ih.transpose()))
gru.weights[1].assign(tf.convert_to_tensor(w_hh.transpose()))
gru.weights[2].assign(tf.convert_to_tensor(np.vstack((b_ih, b_hh))))
def dump_tf_dense_weights(where, dense, name=None):
w = dense.weights[0].numpy()
if dense.bias is None:
b = np.zeros(dense.units, dtype=w.dtype)
else:
b = dense.bias.numpy()
if isinstance(where, CWriter):
try:
activation = dense.activation.__name__.upper()
except:
activation = "LINEAR"
return print_dense_layer(where, name, w, b, activation, format='tf')
else:
os.makedirs(where, exist_ok=True)
np.save(os.path.join(where, 'weight.npy'), w.transpose())
np.save(os.path.join(where, 'bias.npy'), b)
def load_tf_dense_weights(path, dense):
w = np.load(os.path.join(path, 'weight.npy')).transpose()
b = np.load(os.path.join(path, 'bias.npy'))
dense.weights[0].assign(tf.convert_to_tensor(w))
if dense.bias is not None:
dense.weights[1].assign(tf.convert_to_tensor(b))
def dump_tf_conv1d_weights(where, conv, name=None):
assert conv.data_format == 'channels_last'
w = conv.weights[0].numpy().copy()
if conv.bias is None:
b = np.zeros(conv.filters, dtype=w.dtype)
else:
b = conv.bias.numpy()
if isinstance(where, CWriter):
try:
activation = conv.activation.__name__.upper()
except:
activation = "LINEAR"
return print_conv1d_layer(where, name, w, b, activation, format='tf')
else:
os.makedirs(where, exist_ok=True)
w = np.transpose(w, (2, 1, 0))
np.save(os.path.join(where, 'weight_oik.npy'), w)
np.save(os.path.join(where, 'bias.npy'), b)
def load_tf_conv1d_weights(path, conv):
w = np.load(os.path.join(path, 'weight_oik.npy'))
b = np.load(os.path.join(path, 'bias.npy'))
w = np.transpose(w, (2, 1, 0))
conv.weights[0].assign(tf.convert_to_tensor(w))
if conv.bias is not None:
conv.weights[1].assign(tf.convert_to_tensor(b))
def dump_tf_embedding_weights(path, emb):
os.makedirs(path, exist_ok=True)
w = emb.weights[0].numpy()
np.save(os.path.join(path, 'weight.npy'), w)
def load_tf_embedding_weights(path, emb):
w = np.load(os.path.join(path, 'weight.npy'))
emb.weights[0].assign(tf.convert_to_tensor(w))
def dump_tf_weights(path, module):
if isinstance(module, tf.keras.layers.Dense):
dump_tf_dense_weights(path, module)
elif isinstance(module, tf.keras.layers.GRU):
dump_tf_gru_weights(path, module)
elif isinstance(module, tf.keras.layers.Conv1D):
dump_tf_conv1d_weights(path, module)
elif isinstance(module, tf.keras.layers.Embedding):
dump_tf_embedding_weights(path, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')
def load_tf_weights(path, module):
if isinstance(module, tf.keras.layers.Dense):
load_tf_dense_weights(path, module)
elif isinstance(module, tf.keras.layers.GRU):
load_tf_gru_weights(path, module)
elif isinstance(module, tf.keras.layers.Conv1D):
load_tf_conv1d_weights(path, module)
elif isinstance(module, tf.keras.layers.Embedding):
load_tf_embedding_weights(path, module)
else:
raise ValueError(f'dump_tf_weights: layer of type {type(module)} not supported')