mirror of
https://github.com/xiph/opus.git
synced 2025-05-16 00:18:29 +00:00
126 lines
4.8 KiB
C
126 lines
4.8 KiB
C
/* Copyright (c) 2018 Mozilla */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include "nnet_data.h"
|
|
#include "nnet.h"
|
|
#include "common.h"
|
|
#include "arch.h"
|
|
#include "lpcnet.h"
|
|
|
|
#define NB_FEATURES 38
|
|
|
|
#define PITCH_GAIN_FEATURE 37
|
|
#define PDF_FLOOR 0.002
|
|
|
|
#define FRAME_INPUT_SIZE (NB_FEATURES + EMBED_PITCH_OUT_SIZE)
|
|
|
|
#define SAMPLE_INPUT_SIZE (2*EMBED_SIG_OUT_SIZE + EMBED_EXC_OUT_SIZE + FEATURE_DENSE2_OUT_SIZE)
|
|
|
|
static int ulaw2lin(int u)
|
|
{
|
|
float s;
|
|
float scale_1 = 32768.f/255.f;
|
|
u = u - 128;
|
|
s = u >= 0 ? 1 : -1;
|
|
u = abs(u);
|
|
return s*scale_1*(exp(u/128.*log(256))-1);
|
|
}
|
|
|
|
static int lin2ulaw(int x)
|
|
{
|
|
float u;
|
|
float scale = 255.f/32768.f;
|
|
int s = x >= 0 ? 1 : -1;
|
|
x = abs(x);
|
|
u = (s*(128*log(1+scale*x)/log(256)));
|
|
u = 128 + u;
|
|
if (u < 0) u = 0;
|
|
if (u > 255) u = 255;
|
|
return (int)floor(.5 + u);
|
|
}
|
|
|
|
void run_frame_network(NNetState *net, float *condition, float *lpc, const float *features, int pitch)
|
|
{
|
|
int i;
|
|
float in[FRAME_INPUT_SIZE];
|
|
float conv1_out[FEATURE_CONV1_OUT_SIZE];
|
|
float conv2_out[FEATURE_CONV2_OUT_SIZE];
|
|
float dense1_out[FEATURE_DENSE1_OUT_SIZE];
|
|
RNN_COPY(in, features, NB_FEATURES);
|
|
compute_embedding(&embed_pitch, &in[NB_FEATURES], pitch);
|
|
compute_conv1d(&feature_conv1, conv1_out, net->feature_conv1_state, in);
|
|
compute_conv1d(&feature_conv2, conv2_out, net->feature_conv2_state, conv1_out);
|
|
celt_assert(FRAME_INPUT_SIZE == FEATURE_CONV2_OUT_SIZE);
|
|
for (i=0;i<FEATURE_CONV2_OUT_SIZE;i++) conv2_out[i] += in[i];
|
|
compute_dense(&feature_dense1, dense1_out, conv2_out);
|
|
compute_dense(&feature_dense2, condition, dense1_out);
|
|
/* FIXME: Actually compute the LPC on the middle frame. */
|
|
RNN_CLEAR(lpc, LPC_ORDER);
|
|
}
|
|
|
|
void run_sample_network(NNetState *net, float *pdf, const float *condition, int last_exc, int last_sig, int pred)
|
|
{
|
|
float in_a[SAMPLE_INPUT_SIZE];
|
|
float in_b[GRU_A_STATE_SIZE+FEATURE_DENSE2_OUT_SIZE];
|
|
compute_embedding(&embed_sig, &in_a[0], last_sig);
|
|
compute_embedding(&embed_sig, &in_a[EMBED_SIG_OUT_SIZE], pred);
|
|
compute_embedding(&embed_exc, &in_a[2*EMBED_SIG_OUT_SIZE], last_exc);
|
|
RNN_COPY(&in_a[2*EMBED_SIG_OUT_SIZE + EMBED_EXC_OUT_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
|
|
compute_gru(&gru_a, net->gru_a_state, in_a);
|
|
RNN_COPY(in_b, net->gru_a_state, GRU_A_STATE_SIZE);
|
|
RNN_COPY(&in_b[GRU_A_STATE_SIZE], condition, FEATURE_DENSE2_OUT_SIZE);
|
|
compute_gru(&gru_b, net->gru_b_state, in_b);
|
|
compute_mdense(&dual_fc, pdf, net->gru_b_state);
|
|
}
|
|
|
|
void generate_samples(LPCNetState *lpcnet, short *output, const float *features, int pitch, int N)
|
|
{
|
|
int i;
|
|
float condition[FEATURE_DENSE2_OUT_SIZE];
|
|
float lpc[LPC_ORDER];
|
|
float pdf[DUAL_FC_OUT_SIZE];
|
|
run_frame_network(&lpcnet->nnet, condition, lpc, features, pitch);
|
|
for (i=0;i<N;i++)
|
|
{
|
|
int j;
|
|
int pred;
|
|
int exc;
|
|
int last_sig_ulaw;
|
|
int pred_ulaw;
|
|
float sum = 0;
|
|
for (j=0;j<LPC_ORDER;j++) sum += lpcnet->last_sig[j]*lpc[j];
|
|
pred = (int)floor(.5f + sum);
|
|
last_sig_ulaw = lin2ulaw(lpcnet->last_sig[0]);
|
|
pred_ulaw = lin2ulaw(pred);
|
|
run_sample_network(&lpcnet->nnet, pdf, condition, lpcnet->last_exc, last_sig_ulaw, pred_ulaw);
|
|
exc = sample_from_pdf(pdf, DUAL_FC_OUT_SIZE, MAX16(0, 1.5f*features[PITCH_GAIN_FEATURE] - .5f), PDF_FLOOR);
|
|
output[i] = pred + ulaw2lin(exc);
|
|
RNN_MOVE(&lpcnet->last_sig[1], &lpcnet->last_sig[0], LPC_ORDER-1);
|
|
lpcnet->last_sig[0] = output[i];
|
|
lpcnet->last_exc = exc;
|
|
}
|
|
}
|