opus/dnn/lpcnet.py
2018-10-21 02:45:21 -04:00

138 lines
4.9 KiB
Python

#!/usr/bin/python3
import math
from keras.models import Model
from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation
from keras import backend as K
from keras.initializers import Initializer
from keras.callbacks import Callback
from mdense import MDense
import numpy as np
import h5py
import sys
rnn_units1=384
rnn_units2=16
pcm_bits = 8
embed_size = 128
pcm_levels = 2**pcm_bits
nb_used_features = 38
class Sparsify(Callback):
def __init__(self, t_start, t_end, interval, density):
super(Sparsify, self).__init__()
self.batch = 0
self.t_start = t_start
self.t_end = t_end
self.interval = interval
self.final_density = density
def on_batch_end(self, batch, logs=None):
#print("batch number", self.batch)
self.batch += 1
if self.batch < self.t_start or ((self.batch-self.t_start) % self.interval != 0 and self.batch < self.t_end):
#print("don't constrain");
pass
else:
#print("constrain");
layer = self.model.get_layer('cu_dnngru_1')
w = layer.get_weights()
p = w[1]
nb = p.shape[1]//p.shape[0]
N = p.shape[0]
#print("nb = ", nb, ", N = ", N);
#print(p.shape)
density = self.final_density
if self.batch < self.t_end:
r = 1 - (self.batch-self.t_start)/(self.t_end - self.t_start)
density = 1 - (1-self.final_density)*(1 - r*r*r)
#print ("density = ", density)
for k in range(nb):
A = p[:, k*N:(k+1)*N]
A = A - np.diag(np.diag(A))
L=np.reshape(A, (N, N//16, 16))
S=np.sum(L*L, axis=-1)
SS=np.sort(np.reshape(S, (-1,)))
thresh = SS[round(N*N//16*(1-density))]
mask = (S>=thresh).astype('float32');
mask = np.repeat(mask, 16, axis=1)
mask = np.minimum(1, mask + np.diag(np.ones((N,))))
p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask
#print(thresh, np.mean(mask))
w[1] = p
layer.set_weights(w)
class PCMInit(Initializer):
def __init__(self, gain=.1, seed=None):
self.gain = gain
self.seed = seed
def __call__(self, shape, dtype=None):
num_rows = 1
for dim in shape[:-1]:
num_rows *= dim
num_cols = shape[-1]
flat_shape = (num_rows, num_cols)
if self.seed is not None:
np.random.seed(self.seed)
a = np.random.uniform(-1.7321, 1.7321, flat_shape)
#a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows
#a[:,1] = .5*a[:,0]*a[:,0]*a[:,0]
a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1))
return self.gain * a
def get_config(self):
return {
'gain': self.gain,
'seed': self.seed
}
def new_wavernn_model():
pcm = Input(shape=(None, 2))
exc = Input(shape=(None, 1))
feat = Input(shape=(None, nb_used_features))
pitch = Input(shape=(None, 1))
dec_feat = Input(shape=(None, 128))
dec_state1 = Input(shape=(rnn_units1,))
dec_state2 = Input(shape=(rnn_units2,))
fconv1 = Conv1D(128, 3, padding='same', activation='tanh')
fconv2 = Conv1D(102, 3, padding='same', activation='tanh')
embed = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cpcm = Reshape((-1, embed_size*2))(embed(pcm))
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cexc = Reshape((-1, embed_size))(embed2(exc))
pembed = Embedding(256, 64)
cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))])
cfeat = fconv2(fconv1(cat_feat))
fdense1 = Dense(128, activation='tanh')
fdense2 = Dense(128, activation='tanh')
cfeat = Add()([cfeat, cat_feat])
cfeat = fdense2(fdense1(cfeat))
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True)
rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True)
rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax')
gru_out1, _ = rnn(rnn_in)
gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)]))
ulaw_prob = md(gru_out2)
model = Model([pcm, exc, feat, pitch], ulaw_prob)
encoder = Model([feat, pitch], cfeat)
dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat])
dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1)
dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2)
dec_ulaw_prob = md(dec_gru_out2)
decoder = Model([pcm, exc, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2])
return model, encoder, decoder