opus/dnn/torch/neural-pitch/neural_pitch_update.py
2023-09-26 12:12:47 -04:00

206 lines
8.1 KiB
Python

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('features', type=str, help='Features generated from dump_data')
parser.add_argument('data', type=str, help='Data generated from dump_data (offset by 5ms)')
parser.add_argument('output', type=str, help='output .f32 feature file with replaced neural pitch')
parser.add_argument('checkpoint', type=str, help='model checkpoint file')
parser.add_argument('path_lpcnet_extractor', type=str, help='path to LPCNet extractor object file (generated on compilation)')
parser.add_argument('--device', type=str, help='compute device',default = None,required = False)
parser.add_argument('--replace_xcorr', type = bool, default = False, help='Replace LPCNet xcorr with updated one')
args = parser.parse_args()
import os
from utils import stft, random_filter
import subprocess
import numpy as np
import json
import torch
import tqdm
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device is not None:
device = torch.device(args.device)
# Loading the appropriate model
checkpoint = torch.load(args.checkpoint, map_location='cpu')
dict_params = checkpoint['config']
if dict_params['data_format'] == 'if':
from models import large_if_ccode as model
pitch_nn = model(dict_params['freq_keep']*3,dict_params['gru_dim'],dict_params['output_dim'])
elif dict_params['data_format'] == 'xcorr':
from models import large_xcorr as model
pitch_nn = model(dict_params['xcorr_dim'],dict_params['gru_dim'],dict_params['output_dim'])
else:
from models import large_joint as model
pitch_nn = model(dict_params['freq_keep']*3,dict_params['xcorr_dim'],dict_params['gru_dim'],dict_params['output_dim'])
pitch_nn.load_state_dict(checkpoint['state_dict'])
pitch_nn = pitch_nn.to(device)
N = dict_params['window_size']
H = dict_params['hop_factor']
freq_keep = dict_params['freq_keep']
# import os
# import argparse
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ["OMP_NUM_THREADS"] = "16"
# parser = argparse.ArgumentParser()
# parser.add_argument('features', type=str, help='input features')
# parser.add_argument('data', type=str, help='input data')
# parser.add_argument('output', type=str, help='output features')
# parser.add_argument('--add-confidence', action='store_true', help='add CREPE confidence to features')
# parser.add_argument('--viterbi', action='store_true', help='enable viterbi algo for pitch tracking')
def run_lpc(signal, lpcs, frame_length=160):
num_frames, lpc_order = lpcs.shape
prediction = np.concatenate(
[- np.convolve(signal[i * frame_length : (i + 1) * frame_length + lpc_order - 1], lpcs[i], mode='valid') for i in range(num_frames)]
)
error = signal[lpc_order :] - prediction
return prediction, error
if __name__ == "__main__":
args = parser.parse_args()
features = np.memmap(args.features, dtype=np.float32,mode = 'r').reshape((-1, 36))
data = np.memmap(args.data, dtype=np.int16,mode = 'r').reshape((-1, 2))
num_frames = features.shape[0]
feature_dim = features.shape[1]
assert feature_dim == 36
# if args.add_confidence:
# feature_dim += 1
output = np.memmap(args.output, dtype=np.float32, shape=(num_frames, feature_dim), mode='w+')
output[:, :36] = features
# lpc coefficients and signal
lpcs = features[:, 20:36]
sig = data[:, 1]
# parameters
# use_viterbi=args.viterbi
# constants
pitch_min = 32
pitch_max = 256
lpc_order = 16
fs = 16000
frame_length = 160
overlap_frames = 100
chunk_size = 10000
history_length = frame_length * overlap_frames
history = np.zeros(history_length, dtype=np.int16)
pitch_position=18
xcorr_position=19
conf_position=36
num_frames = len(sig) // 160 - 1
frame_start = 0
frame_stop = min(frame_start + chunk_size, num_frames)
signal_start = 0
signal_stop = frame_stop * frame_length
niters = (num_frames - 1)//chunk_size
for i in tqdm.trange(niters):
if (frame_start > num_frames - 1):
break
chunk = np.concatenate((history, sig[signal_start:signal_stop]))
chunk_la = np.concatenate((history, sig[signal_start:signal_stop + 80]))
# time, frequency, confidence, _ = crepe.predict(chunk, fs, center=True, viterbi=True,verbose=0)
# Feature computation
spec = stft(x = np.concatenate([np.zeros(80),chunk_la/(2**15 - 1)]), w = 'boxcar', N = N, H = H).T
phase_diff = spec*np.conj(np.roll(spec,1,axis = -1))
phase_diff = phase_diff/(np.abs(phase_diff) + 1.0e-8)
idx_save = np.concatenate([np.arange(freq_keep),(N//2 + 1) + np.arange(freq_keep),2*(N//2 + 1) + np.arange(freq_keep)])
feature = np.concatenate([np.log(np.abs(spec) + 1.0e-8),np.real(phase_diff),np.imag(phase_diff)],axis = 0).T
feature_if = feature[:,idx_save]
data_temp = np.memmap('./temp_featcompute_' + dict_params['data_format'] + '_.raw', dtype=np.int16, shape=(chunk.shape[0]), mode='w+')
data_temp[:chunk.shape[0]] = chunk_la[80:].astype(np.int16)
subprocess.run([args.path_lpcnet_extractor, './temp_featcompute_' + dict_params['data_format'] + '_.raw', './temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw'])
feature_xcorr = np.flip(np.fromfile('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw', dtype='float32').reshape((-1,256),order = 'C'),axis = 1)
ones_zero_lag = np.expand_dims(np.ones(feature_xcorr.shape[0]),-1)
feature_xcorr = np.concatenate([ones_zero_lag,feature_xcorr],axis = -1)
os.remove('./temp_featcompute_' + dict_params['data_format'] + '_.raw')
os.remove('./temp_featcompute_xcorr_' + dict_params['data_format'] + '_.raw')
if dict_params['data_format'] == 'if':
feature = feature_if
elif dict_params['data_format'] == 'xcorr':
feature = feature_xcorr
else:
indmin = min(feature_if.shape[0],feature_xcorr.shape[0])
feature = np.concatenate([feature_xcorr[:indmin,:],feature_if[:indmin,:]],-1)
# Compute pitch with my model
model_cents = pitch_nn(torch.from_numpy(np.copy(np.expand_dims(feature,0))).float().to(device))
model_cents = 20*model_cents.argmax(dim=1).cpu().detach().squeeze().numpy()
frequency = 62.5*2**(model_cents/1200)
frequency = frequency[overlap_frames : overlap_frames + frame_stop - frame_start]
# confidence = confidence[overlap_frames : overlap_frames + frame_stop - frame_start]
# convert frequencies to periods
periods = np.round(fs / frequency)
# adjust to pitch range
# confidence[periods < pitch_min] = 0
# confidence[periods > pitch_max] = 0
periods = np.clip(periods, pitch_min, pitch_max)
output[frame_start:frame_stop, pitch_position] = (periods - 100) / 50
# if args.replace_xcorr:
# re-calculate xcorr
frame_offset = (pitch_max + frame_length - 1) // frame_length
offset = frame_offset * frame_length
padding = lpc_order
if frame_start < frame_offset:
lpc_coeffs = np.concatenate((np.zeros((frame_offset - frame_start, lpc_order), dtype=np.float32), lpcs[:frame_stop]))
else:
lpc_coeffs = lpcs[frame_start - frame_offset : frame_stop]
pred, error = run_lpc(chunk[history_length - offset - padding :], lpc_coeffs, frame_length=frame_length)
xcorr = np.zeros(frame_stop - frame_start)
for i, p in enumerate(periods.astype(np.int16)):
if p > 0:
f1 = error[offset + i * frame_length : offset + (i + 1) * frame_length]
f2 = error[offset + i * frame_length - p : offset + (i + 1) * frame_length - p]
xcorr[i] = np.dot(f1, f2) / np.sqrt(np.dot(f1, f1) * np.dot(f2, f2) + 1e-6)
output[frame_start:frame_stop, xcorr_position] = xcorr - 0.5
# update buffers and indices
history = chunk[-history_length :]
frame_start += chunk_size
frame_stop += chunk_size
frame_stop = min(frame_stop, num_frames)
signal_start = frame_start * frame_length
signal_stop = frame_stop * frame_length