mirror of
https://github.com/xiph/opus.git
synced 2025-05-16 16:38:30 +00:00
274 lines
11 KiB
Python
274 lines
11 KiB
Python
import torch
|
|
from torch import nn
|
|
import numpy as np
|
|
|
|
from utils.ulaw import lin2ulawq, ulaw2lin
|
|
from utils.sample import sample_excitation
|
|
from utils.pcm import clip_to_int16
|
|
from utils.sparsification import GRUSparsifier, calculate_gru_flops_per_step
|
|
from utils.layers import DualFC
|
|
from utils.misc import get_pdf_from_tree
|
|
|
|
|
|
class LPCNet(nn.Module):
|
|
def __init__(self, config):
|
|
super(LPCNet, self).__init__()
|
|
|
|
#
|
|
self.input_layout = config['input_layout']
|
|
self.feature_history = config['feature_history']
|
|
self.feature_lookahead = config['feature_lookahead']
|
|
|
|
# frame rate network parameters
|
|
self.feature_dimension = config['feature_dimension']
|
|
self.period_embedding_dim = config['period_embedding_dim']
|
|
self.period_levels = config['period_levels']
|
|
self.feature_channels = self.feature_dimension + self.period_embedding_dim
|
|
self.feature_conditioning_dim = config['feature_conditioning_dim']
|
|
self.feature_conv_kernel_size = config['feature_conv_kernel_size']
|
|
|
|
|
|
# frame rate network layers
|
|
self.period_embedding = nn.Embedding(self.period_levels, self.period_embedding_dim)
|
|
self.feature_conv1 = nn.Conv1d(self.feature_channels, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
|
|
self.feature_conv2 = nn.Conv1d(self.feature_conditioning_dim, self.feature_conditioning_dim, self.feature_conv_kernel_size, padding='valid')
|
|
self.feature_dense1 = nn.Linear(self.feature_conditioning_dim, self.feature_conditioning_dim)
|
|
self.feature_dense2 = nn.Linear(*(2*[self.feature_conditioning_dim]))
|
|
|
|
# sample rate network parameters
|
|
self.frame_size = config['frame_size']
|
|
self.signal_levels = config['signal_levels']
|
|
self.signal_embedding_dim = config['signal_embedding_dim']
|
|
self.gru_a_units = config['gru_a_units']
|
|
self.gru_b_units = config['gru_b_units']
|
|
self.output_levels = config['output_levels']
|
|
self.hsampling = config.get('hsampling', False)
|
|
|
|
self.gru_a_input_dim = len(self.input_layout['signals']) * self.signal_embedding_dim + self.feature_conditioning_dim
|
|
self.gru_b_input_dim = self.gru_a_units + self.feature_conditioning_dim
|
|
|
|
# sample rate network layers
|
|
self.signal_embedding = nn.Embedding(self.signal_levels, self.signal_embedding_dim)
|
|
self.gru_a = nn.GRU(self.gru_a_input_dim, self.gru_a_units, batch_first=True)
|
|
self.gru_b = nn.GRU(self.gru_b_input_dim, self.gru_b_units, batch_first=True)
|
|
self.dual_fc = DualFC(self.gru_b_units, self.output_levels)
|
|
|
|
# sparsification
|
|
self.sparsifier = []
|
|
|
|
# GRU A
|
|
if 'gru_a' in config['sparsification']:
|
|
gru_config = config['sparsification']['gru_a']
|
|
task_list = [(self.gru_a, gru_config['params'])]
|
|
self.sparsifier.append(GRUSparsifier(task_list,
|
|
gru_config['start'],
|
|
gru_config['stop'],
|
|
gru_config['interval'],
|
|
gru_config['exponent'])
|
|
)
|
|
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a,
|
|
gru_config['params'], drop_input=True)
|
|
else:
|
|
self.gru_a_flops_per_step = calculate_gru_flops_per_step(self.gru_a, drop_input=True)
|
|
|
|
# GRU B
|
|
if 'gru_b' in config['sparsification']:
|
|
gru_config = config['sparsification']['gru_b']
|
|
task_list = [(self.gru_b, gru_config['params'])]
|
|
self.sparsifier.append(GRUSparsifier(task_list,
|
|
gru_config['start'],
|
|
gru_config['stop'],
|
|
gru_config['interval'],
|
|
gru_config['exponent'])
|
|
)
|
|
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b,
|
|
gru_config['params'])
|
|
else:
|
|
self.gru_b_flops_per_step = calculate_gru_flops_per_step(self.gru_b)
|
|
|
|
# inference parameters
|
|
self.lpc_gamma = config.get('lpc_gamma', 1)
|
|
|
|
def sparsify(self):
|
|
for sparsifier in self.sparsifier:
|
|
sparsifier.step()
|
|
|
|
def get_gflops(self, fs, verbose=False):
|
|
gflops = 0
|
|
|
|
# frame rate network
|
|
conditioning_dim = self.feature_conditioning_dim
|
|
feature_channels = self.feature_channels
|
|
frame_rate = fs / self.frame_size
|
|
frame_rate_network_complexity = 1e-9 * 2 * (5 * conditioning_dim + 3 * feature_channels) * conditioning_dim * frame_rate
|
|
if verbose:
|
|
print(f"frame rate network: {frame_rate_network_complexity} GFLOPS")
|
|
gflops += frame_rate_network_complexity
|
|
|
|
# gru a
|
|
gru_a_rate = fs
|
|
gru_a_complexity = 1e-9 * gru_a_rate * self.gru_a_flops_per_step
|
|
if verbose:
|
|
print(f"gru A: {gru_a_complexity} GFLOPS")
|
|
gflops += gru_a_complexity
|
|
|
|
# gru b
|
|
gru_b_rate = fs
|
|
gru_b_complexity = 1e-9 * gru_b_rate * self.gru_b_flops_per_step
|
|
if verbose:
|
|
print(f"gru B: {gru_b_complexity} GFLOPS")
|
|
gflops += gru_b_complexity
|
|
|
|
|
|
# dual fcs
|
|
fc = self.dual_fc
|
|
rate = fs
|
|
input_size = fc.dense1.in_features
|
|
output_size = fc.dense1.out_features
|
|
dual_fc_complexity = 1e-9 * (4 * input_size * output_size + 22 * output_size) * rate
|
|
if self.hsampling:
|
|
dual_fc_complexity /= 8
|
|
if verbose:
|
|
print(f"dual_fc: {dual_fc_complexity} GFLOPS")
|
|
gflops += dual_fc_complexity
|
|
|
|
if verbose:
|
|
print(f'total: {gflops} GFLOPS')
|
|
|
|
return gflops
|
|
|
|
def frame_rate_network(self, features, periods):
|
|
|
|
embedded_periods = torch.flatten(self.period_embedding(periods), 2, 3)
|
|
features = torch.concat((features, embedded_periods), dim=-1)
|
|
|
|
# convert to channels first and calculate conditioning vector
|
|
c = torch.permute(features, [0, 2, 1])
|
|
|
|
c = torch.tanh(self.feature_conv1(c))
|
|
c = torch.tanh(self.feature_conv2(c))
|
|
# back to channels last
|
|
c = torch.permute(c, [0, 2, 1])
|
|
c = torch.tanh(self.feature_dense1(c))
|
|
c = torch.tanh(self.feature_dense2(c))
|
|
|
|
return c
|
|
|
|
def sample_rate_network(self, signals, c, gru_states):
|
|
embedded_signals = torch.flatten(self.signal_embedding(signals), 2, 3)
|
|
c_upsampled = torch.repeat_interleave(c, self.frame_size, dim=1)
|
|
|
|
y = torch.concat((embedded_signals, c_upsampled), dim=-1)
|
|
y, gru_a_state = self.gru_a(y, gru_states[0])
|
|
y = torch.concat((y, c_upsampled), dim=-1)
|
|
y, gru_b_state = self.gru_b(y, gru_states[1])
|
|
|
|
y = self.dual_fc(y)
|
|
|
|
if self.hsampling:
|
|
y = torch.sigmoid(y)
|
|
log_probs = torch.log(get_pdf_from_tree(y) + 1e-6)
|
|
else:
|
|
log_probs = torch.log_softmax(y, dim=-1)
|
|
|
|
return log_probs, (gru_a_state, gru_b_state)
|
|
|
|
def decoder(self, signals, c, gru_states):
|
|
embedded_signals = torch.flatten(self.signal_embedding(signals), 2, 3)
|
|
|
|
y = torch.concat((embedded_signals, c), dim=-1)
|
|
y, gru_a_state = self.gru_a(y, gru_states[0])
|
|
y = torch.concat((y, c), dim=-1)
|
|
y, gru_b_state = self.gru_b(y, gru_states[1])
|
|
|
|
y = self.dual_fc(y)
|
|
|
|
if self.hsampling:
|
|
y = torch.sigmoid(y)
|
|
probs = get_pdf_from_tree(y)
|
|
else:
|
|
probs = torch.softmax(y, dim=-1)
|
|
|
|
return probs, (gru_a_state, gru_b_state)
|
|
|
|
def forward(self, features, periods, signals, gru_states):
|
|
|
|
c = self.frame_rate_network(features, periods)
|
|
log_probs, _ = self.sample_rate_network(signals, c, gru_states)
|
|
|
|
return log_probs
|
|
|
|
def generate(self, features, periods, lpcs):
|
|
|
|
with torch.no_grad():
|
|
device = self.parameters().__next__().device
|
|
|
|
num_frames = features.shape[0] - self.feature_history - self.feature_lookahead
|
|
lpc_order = lpcs.shape[-1]
|
|
num_input_signals = len(self.input_layout['signals'])
|
|
pitch_corr_position = self.input_layout['features']['pitch_corr'][0]
|
|
|
|
# signal buffers
|
|
pcm = torch.zeros((num_frames * self.frame_size + lpc_order))
|
|
output = torch.zeros((num_frames * self.frame_size), dtype=torch.int16)
|
|
mem = 0
|
|
|
|
# state buffers
|
|
gru_a_state = torch.zeros((1, 1, self.gru_a_units))
|
|
gru_b_state = torch.zeros((1, 1, self.gru_b_units))
|
|
gru_states = [gru_a_state, gru_b_state]
|
|
|
|
input_signals = torch.zeros((1, 1, num_input_signals), dtype=torch.long) + 128
|
|
|
|
# push data to device
|
|
features = features.to(device)
|
|
periods = periods.to(device)
|
|
lpcs = lpcs.to(device)
|
|
|
|
# lpc weighting
|
|
weights = torch.FloatTensor([self.lpc_gamma ** (i + 1) for i in range(lpc_order)]).to(device)
|
|
lpcs = lpcs * weights
|
|
|
|
# run feature encoding
|
|
c = self.frame_rate_network(features.unsqueeze(0), periods.unsqueeze(0))
|
|
|
|
for frame_index in range(num_frames):
|
|
frame_start = frame_index * self.frame_size
|
|
pitch_corr = features[frame_index + self.feature_history, pitch_corr_position]
|
|
a = - torch.flip(lpcs[frame_index + self.feature_history], [0])
|
|
current_c = c[:, frame_index : frame_index + 1, :]
|
|
|
|
for i in range(self.frame_size):
|
|
pcm_position = frame_start + i + lpc_order
|
|
output_position = frame_start + i
|
|
|
|
# prepare input
|
|
pred = torch.sum(pcm[pcm_position - lpc_order : pcm_position] * a)
|
|
if 'prediction' in self.input_layout['signals']:
|
|
input_signals[0, 0, self.input_layout['signals']['prediction']] = lin2ulawq(pred)
|
|
|
|
# run single step of sample rate network
|
|
probs, gru_states = self.decoder(
|
|
input_signals,
|
|
current_c,
|
|
gru_states
|
|
)
|
|
|
|
# sample from output
|
|
exc_ulaw = sample_excitation(probs, pitch_corr)
|
|
|
|
# signal generation
|
|
exc = ulaw2lin(exc_ulaw)
|
|
sig = exc + pred
|
|
pcm[pcm_position] = sig
|
|
mem = 0.85 * mem + float(sig)
|
|
output[output_position] = clip_to_int16(round(mem))
|
|
|
|
# buffer update
|
|
if 'last_signal' in self.input_layout['signals']:
|
|
input_signals[0, 0, self.input_layout['signals']['last_signal']] = lin2ulawq(sig)
|
|
|
|
if 'last_error' in self.input_layout['signals']:
|
|
input_signals[0, 0, self.input_layout['signals']['last_error']] = lin2ulawq(exc)
|
|
|
|
return output
|