opus/dnn/torch/lpcnet/engine/lpcnet_engine.py
Jan Buethe 35ee397e06
added LPCNet torch implementation
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-05 12:29:38 +02:00

112 lines
No EOL
3.3 KiB
Python

import torch
from tqdm import tqdm
import sys
def train_one_epoch(model, criterion, optimizer, dataloader, device, scheduler, log_interval=10):
model.to(device)
model.train()
running_loss = 0
previous_running_loss = 0
# gru states
gru_a_state = torch.zeros(1, dataloader.batch_size, model.gru_a_units, device=device).to(device)
gru_b_state = torch.zeros(1, dataloader.batch_size, model.gru_b_units, device=device).to(device)
gru_states = [gru_a_state, gru_b_state]
with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
for i, batch in enumerate(tepoch):
# set gradients to zero
optimizer.zero_grad()
# zero out initial gru states
gru_a_state.zero_()
gru_b_state.zero_()
# push batch to device
for key in batch:
batch[key] = batch[key].to(device)
target = batch['target']
# calculate model output
output = model(batch['features'], batch['periods'], batch['signals'], gru_states)
# calculate loss
loss = criterion(output.permute(0, 2, 1), target)
# calculate gradients
loss.backward()
# update weights
optimizer.step()
# update learning rate
scheduler.step()
# call sparsifier
model.sparsify()
# update running loss
running_loss += float(loss.cpu())
# update status bar
if i % log_interval == 0:
tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
previous_running_loss = running_loss
running_loss /= len(dataloader)
return running_loss
def evaluate(model, criterion, dataloader, device, log_interval=10):
model.to(device)
model.eval()
running_loss = 0
previous_running_loss = 0
# gru states
gru_a_state = torch.zeros(1, dataloader.batch_size, model.gru_a_units, device=device).to(device)
gru_b_state = torch.zeros(1, dataloader.batch_size, model.gru_b_units, device=device).to(device)
gru_states = [gru_a_state, gru_b_state]
with torch.no_grad():
with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
for i, batch in enumerate(tepoch):
# zero out initial gru states
gru_a_state.zero_()
gru_b_state.zero_()
# push batch to device
for key in batch:
batch[key] = batch[key].to(device)
target = batch['target']
# calculate model output
output = model(batch['features'], batch['periods'], batch['signals'], gru_states)
# calculate loss
loss = criterion(output.permute(0, 2, 1), target)
# update running loss
running_loss += float(loss.cpu())
# update status bar
if i % log_interval == 0:
tepoch.set_postfix(running_loss=f"{running_loss/(i + 1):8.7f}", current_loss=f"{(running_loss - previous_running_loss)/log_interval:8.7f}")
previous_running_loss = running_loss
running_loss /= len(dataloader)
return running_loss