opus/dnn/torch/osce/models/fd_discriminator.py
Jan Buethe 2f290d32ed
added more enhancement stuff
Signed-off-by: Jan Buethe <jbuethe@amazon.de>
2023-09-12 14:50:24 +02:00

974 lines
29 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import math as m
import copy
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.utils import weight_norm, spectral_norm
import torchaudio
from utils.spec import gen_filterbank
# auxiliary functions
def remove_all_weight_norms(module):
for m in module.modules():
if hasattr(m, 'weight_v'):
nn.utils.remove_weight_norm(m)
def create_smoothing_kernel(h, w, gamma=1.5):
ch = h / 2 - 0.5
cw = w / 2 - 0.5
sh = gamma * ch
sw = gamma * cw
vx = ((torch.arange(h) - ch) / sh) ** 2
vy = ((torch.arange(w) - cw) / sw) ** 2
vals = vx.view(-1, 1) + vy.view(1, -1)
kernel = torch.exp(- vals)
kernel = kernel / kernel.sum()
return kernel
def create_kernel(h, w, sh, sw):
# proto kernel gives disjoint partition of 1
proto_kernel = torch.ones((sh, sw))
# create smoothing kernel eta
h_eta, w_eta = h - sh + 1, w - sw + 1
assert h_eta > 0 and w_eta > 0
eta = create_smoothing_kernel(h_eta, w_eta).view(1, 1, h_eta, w_eta)
kernel0 = F.pad(proto_kernel, [w_eta - 1, w_eta - 1, h_eta - 1, h_eta - 1]).unsqueeze(0).unsqueeze(0)
kernel = F.conv2d(kernel0, eta)
return kernel
# positional embeddings
class FrequencyPositionalEmbedding(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
N = x.size(2)
args = torch.arange(0, N, dtype=x.dtype, device=x.device) * torch.pi * 2 / N
cos = torch.cos(args).reshape(1, 1, -1, 1)
sin = torch.sin(args).reshape(1, 1, -1, 1)
zeros = torch.zeros_like(x[:, 0:1, :, :])
y = torch.cat((x, zeros + sin, zeros + cos), dim=1)
return y
class PositionalEmbedding2D(nn.Module):
def __init__(self, d=5):
super().__init__()
self.d = d
def forward(self, x):
N = x.size(2)
M = x.size(3)
h_args = torch.arange(0, N, dtype=x.dtype, device=x.device).reshape(1, 1, -1, 1)
w_args = torch.arange(0, M, dtype=x.dtype, device=x.device).reshape(1, 1, 1, -1)
coeffs = (10000 ** (-2 * torch.arange(0, self.d, dtype=x.dtype, device=x.device) / self.d)).reshape(1, -1, 1, 1)
h_sin = torch.sin(coeffs * h_args)
h_cos = torch.sin(coeffs * h_args)
w_sin = torch.sin(coeffs * w_args)
w_cos = torch.sin(coeffs * w_args)
zeros = torch.zeros_like(x[:, 0:1, :, :])
y = torch.cat((x, zeros + h_sin, zeros + h_cos, zeros + w_sin, zeros + w_cos), dim=1)
return y
# spectral discriminator base class
class SpecDiscriminatorBase(nn.Module):
RECEPTIVE_FIELD_MAX_WIDTH=10000
def __init__(self,
layers,
resolution,
fs=16000,
freq_roi=[50, 7000],
noise_gain=1e-3,
fmap_start_index=0
):
super().__init__()
self.layers = nn.ModuleList(layers)
self.resolution = resolution
self.fs = fs
self.noise_gain = noise_gain
self.fmap_start_index = fmap_start_index
if fmap_start_index >= len(layers):
raise ValueError(f'fmap_start_index is larger than number of layers')
# filter bank for noise shaping
n_fft = resolution[0]
self.filterbank = nn.Parameter(
gen_filterbank(n_fft // 2, fs, keep_size=True),
requires_grad=False
)
# roi bins
f_step = fs / n_fft
self.start_bin = int(m.ceil(freq_roi[0] / f_step - 0.01))
self.stop_bin = min(int(m.floor(freq_roi[1] / f_step + 0.01)), n_fft//2 + 1)
self.init_weights()
# determine receptive field size, offsets and strides
hw = 1000
while True:
x = torch.zeros((1, hw, hw))
with torch.no_grad():
y = self.run_layer_stack(x)[-1]
pos0 = [y.size(-2) // 2, y.size(-1) // 2]
pos1 = [t + 1 for t in pos0]
hs0, ws0 = self._receptive_field((hw, hw), pos0)
hs1, ws1 = self._receptive_field((hw, hw), pos1)
h0 = hs0[1] - hs0[0] + 1
h1 = hs1[1] - hs1[0] + 1
w0 = ws0[1] - ws0[0] + 1
w1 = ws1[1] - ws1[0] + 1
if h0 != h1 or w0 != w1:
hw = 2 * hw
else:
# strides
sh = hs1[0] - hs0[0]
sw = ws1[0] - ws0[0]
if sh == 0 or sw == 0: continue
# offsets
oh = hs0[0] - sh * pos0[0]
ow = ws0[0] - sw * pos0[1]
# overlap factor
overlap = w0 / sw + h0 / sh
#print(f"{w0=} {h0=} {sw=} {sh=} {overlap=}")
self.receptive_field_params = {'width': [sw, ow, w0], 'height': [sh, oh, h0], 'overlap': overlap}
break
if hw > self.RECEPTIVE_FIELD_MAX_WIDTH:
print("warning: exceeded max size while trying to determine receptive field")
# create transposed convolutional kernel
#self.tconv_kernel = nn.Parameter(create_kernel(h0, w0, sw, sw), requires_grad=False)
def run_layer_stack(self, spec):
output = []
x = spec.unsqueeze(1)
for layer in self.layers:
x = layer(x)
output.append(x)
return output
def forward(self, x):
""" returns array with feature maps and final score at index -1 """
output = []
x = self.spectrogram(x)
output = self.run_layer_stack(x)
return output[self.fmap_start_index:]
def receptive_field(self, output_pos):
if self.receptive_field_params is not None:
s, o, h = self.receptive_field_params['height']
h_min = output_pos[0] * s + o + self.start_bin
h_max = h_min + h
h_min = max(h_min, self.start_bin)
h_max = min(h_max, self.stop_bin)
s, o, w = self.receptive_field_params['width']
w_min = output_pos[1] * s + o
w_max = w_min + w
return (h_min, h_max), (w_min, w_max)
else:
return None, None
def _receptive_field(self, input_dims, output_pos):
""" determines receptive field probabilistically via autograd (slow) """
x = torch.randn((1,) + input_dims, requires_grad=True)
# run input through layers
y = self.run_layer_stack(x)[-1]
b, c, h, w = y.shape
if output_pos[0] >= h or output_pos[1] >= w:
raise ValueError("position out of range")
mask = torch.zeros((b, c, h, w))
mask[0, 0, output_pos[0], output_pos[1]] = 1
(mask * y).sum().backward()
hs, ws = torch.nonzero(x.grad[0], as_tuple=True)
h_min, h_max = hs.min().item(), hs.max().item()
w_min, w_max = ws.min().item(), ws.max().item()
return [h_min, h_max], [w_min, w_max]
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d) or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.orthogonal_(m.weight.data)
def spectrogram(self, x):
n_fft, hop_length, win_length = self.resolution
x = x.squeeze(1)
window = getattr(torch, 'hann_window')(win_length).to(x.device)
x = torch.stft(x, n_fft=n_fft, hop_length=hop_length, win_length=win_length,\
window=window, return_complex=True) #[B, F, T]
x = torch.abs(x)
# noise floor following spectral envelope
smoothed_x = torch.matmul(self.filterbank, x)
noise = torch.randn_like(x) * smoothed_x * self.noise_gain
x = x + noise
# frequency ROI
x = x[:, self.start_bin : self.stop_bin + 1, ...]
return torchaudio.functional.amplitude_to_DB(x,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)#torch.sqrt(x)
def grad_map(self, x):
self.zero_grad()
n_fft, hop_length, win_length = self.resolution
window = getattr(torch, 'hann_window')(win_length).to(x.device)
y = torch.stft(x.squeeze(1), n_fft=n_fft, hop_length=hop_length, win_length=win_length,
window=window, return_complex=True) #[B, F, T]
y = torch.abs(y)
specgram = torchaudio.functional.amplitude_to_DB(y,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)
specgram.requires_grad = True
specgram.retain_grad()
if specgram.grad is not None:
specgram.grad.zero_()
y = specgram[:, self.start_bin : self.stop_bin + 1, ...]
scores = self.run_layer_stack(y)[-1]
loss = torch.mean((1 - scores) ** 2)
loss.backward()
return specgram.data[0], torch.abs(specgram.grad)[0]
def relevance_map(self, x):
n_fft, hop_length, win_length = self.resolution
y = x.view(-1)
window = getattr(torch, 'hann_window')(win_length).to(x.device)
y = torch.stft(y, n_fft=n_fft, hop_length=hop_length, win_length=win_length,\
window=window, return_complex=True) #[B, F, T]
y = torch.abs(y)
specgram = torchaudio.functional.amplitude_to_DB(y,db_multiplier=0.0, multiplier=20,amin=1e-05,top_db=80)
scores = self.forward(x)[-1]
sh, _, h = self.receptive_field_params['height']
sw, _, w = self.receptive_field_params['width']
kernel = create_kernel(h, w, sh, sw).float().to(scores.device)
with torch.no_grad():
pad_w = (w + sw - 1) // sw
pad_h = (h + sh - 1) // sh
padded_scores = F.pad(scores, (pad_w, pad_w, pad_h, pad_h), mode='replicate')
# CAVE: padding should be derived from offsets
rv = F.conv_transpose2d(padded_scores, kernel, bias=None, stride=(sh, sw), padding=(h//2, w//2))
rv = rv[..., pad_h * sh : - pad_h * sh, pad_w * sw : -pad_w * sw]
relevance = torch.zeros_like(specgram)
relevance[..., self.start_bin : self.start_bin + rv.size(-2), : rv.size(-1)] = rv
return specgram, relevance
def lrp(self, x, eps=1e-9, label='both', threshold=0.5, low=None, high=None, verbose=False):
""" layer-wise relevance propagation (https://git.tu-berlin.de/gmontavon/lrp-tutorial) """
# ToDo: this code is highly unsafe as it assumes that layers are nn.Sequential with suitable activations
def newconv2d(layer,g):
new_layer = nn.Conv2d(layer.in_channels,
layer.out_channels,
layer.kernel_size,
stride=layer.stride,
padding=layer.padding,
dilation=layer.dilation,
groups=layer.groups)
try: new_layer.weight = nn.Parameter(g(layer.weight.data.clone()))
except AttributeError: pass
try: new_layer.bias = nn.Parameter(g(layer.bias.data.clone()))
except AttributeError: pass
return new_layer
bounds = {
64: [-85.82449722290039, 2.1755014657974243],
128: [-84.49211349487305, 3.5078893899917607],
256: [-80.33127822875977, 7.6687201976776125],
512: [-73.79328079223633, 14.20672025680542],
1024: [-67.59239501953125, 20.40760498046875],
2048: [-62.31902580261231, 25.680974197387698],
}
nfft = self.resolution[0]
if low is None: low = bounds[nfft][0]
if high is None: high = bounds[nfft][1]
remove_all_weight_norms(self)
for p in self.parameters():
if p.grad is not None:
p.grad.zero_()
num_layers = len(self.layers)
X = self.spectrogram(x). detach()
# forward pass
A = [X.unsqueeze(1)] + [None] * len(self.layers)
for i in range(num_layers - 1):
A[i + 1] = self.layers[i](A[i])
# initial relevance is last layer without activation
r = A[-2]
last_layer_rs = [r]
layer = self.layers[-1]
for sublayer in list(layer)[:-1]:
r = sublayer(r)
last_layer_rs.append(r)
mask = torch.zeros_like(r)
mask.requires_grad_(False)
if verbose:
print(r.min(), r.max())
if label in {'both', 'fake'}:
mask[r < -threshold] = 1
if label in {'both', 'real'}:
mask[r > threshold] = 1
r = r * mask
# backward pass
R = [None] * num_layers + [r]
for l in range(1, num_layers)[::-1]:
A[l] = (A[l]).data.requires_grad_(True)
layer = nn.Sequential(*(list(self.layers[l])[:-1]))
z = layer(A[l]) + eps
s = (R[l+1] / z).data
(z*s).sum().backward()
c = A[l].grad
R[l] = (A[l] * c).data
# first layer
A[0] = (A[0].data).requires_grad_(True)
Xl = (torch.zeros_like(A[0].data) + low).requires_grad_(True)
Xh = (torch.zeros_like(A[0].data) + high).requires_grad_(True)
if len(list(self.layers)) > 2:
# unsafe way to check for embedding layer
embed = list(self.layers[0])[0]
conv = list(self.layers[0])[1]
layer = nn.Sequential(embed, conv)
layerl = nn.Sequential(embed, newconv2d(conv, lambda p: p.clamp(min=0)))
layerh = nn.Sequential(embed, newconv2d(conv, lambda p: p.clamp(max=0)))
else:
layer = list(self.layers[0])[0]
layerl = newconv2d(layer, lambda p: p.clamp(min=0))
layerh = newconv2d(layer, lambda p: p.clamp(max=0))
z = layer(A[0])
z -= layerl(Xl) + layerh(Xh)
s = (R[1] / z).data
(z * s).sum().backward()
c, cp, cm = A[0].grad, Xl.grad, Xh.grad
R[0] = (A[0] * c + Xl * cp + Xh * cm)
#R[0] = (A[0] * c).data
return X, R[0].mean(dim=1)
def create_3x3_conv_plan(num_layers : int,
f_stretch : int,
f_down : int,
t_stretch : int,
t_down : int
):
""" creates a stride, dilation, padding plan for a 2d conv network
Args:
num_layers (int): number of layers
f_stretch (int): log_2 of stretching factor along frequency axis
f_down (int): log_2 of downsampling factor along frequency axis
t_stretch (int): log_2 of stretching factor along time axis
t_down (int): log_2 of downsampling factor along time axis
Returns:
list(list(tuple)): list containing entries [(stride_t, stride_f), (dilation_t, dilation_f), (padding_t, padding_f)]
"""
assert num_layers > 0 and t_stretch >= 0 and t_down >= 0 and f_stretch >= 0 and f_down >= 0
assert f_stretch < num_layers and t_stretch < num_layers
def process_dimension(n_layers, stretch, down):
stack_layers = n_layers - 1
stride_layers = min(min(down, stretch) , stack_layers)
dilation_layers = max(min(stack_layers - stride_layers - 1, stretch - stride_layers), 0)
final_stride = 2 ** (max(down - stride_layers, 0))
final_dilation = 1
if stride_layers < stack_layers and stretch - stride_layers - dilation_layers > 0:
final_dilation = 2
strides, dilations, paddings = [], [], []
processed_layers = 0
current_dilation = 1
for _ in range(stride_layers):
# increase receptive field and downsample via stride = 2
strides.append(2)
dilations.append(1)
paddings.append(1)
processed_layers += 1
if processed_layers < stack_layers:
strides.append(1)
dilations.append(1)
paddings.append(1)
processed_layers += 1
for _ in range(dilation_layers):
# increase receptive field via dilation = 2
strides.append(1)
current_dilation *= 2
dilations.append(current_dilation)
paddings.append(current_dilation)
processed_layers += 1
while processed_layers < n_layers - 1:
# fill up with std layers
strides.append(1)
dilations.append(current_dilation)
paddings.append(current_dilation)
processed_layers += 1
# final layer
strides.append(final_stride)
current_dilation * final_dilation
dilations.append(current_dilation)
paddings.append(current_dilation)
processed_layers += 1
assert processed_layers == n_layers
return strides, dilations, paddings
t_strides, t_dilations, t_paddings = process_dimension(num_layers, t_stretch, t_down)
f_strides, f_dilations, f_paddings = process_dimension(num_layers, f_stretch, f_down)
plan = []
for i in range(num_layers):
plan.append([
(f_strides[i], t_strides[i]),
(f_dilations[i], t_dilations[i]),
(f_paddings[i], t_paddings[i]),
])
return plan
class DiscriminatorExperimental(SpecDiscriminatorBase):
def __init__(self,
resolution,
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
num_channels=16,
max_channels=512,
num_layers=5,
use_spectral_norm=False):
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.num_channels = num_channels
self.num_channels_max = max_channels
self.num_layers = num_layers
layers = []
stride = (2, 1)
padding= (1, 1)
in_channels = 1 + 2
out_channels = self.num_channels
for _ in range(self.num_layers):
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
nn.ReLU(inplace=True)
)
)
in_channels = out_channels + 2
out_channels = min(2 * out_channels, self.num_channels_max)
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding)),
nn.Sigmoid()
)
)
super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
# bias biases
bias_val = 0.1
with torch.no_grad():
for name, weight in self.named_parameters():
if 'bias' in name:
weight = weight + bias_val
configs = {
'f_down': {
'stretch' : {
64 : (0, 0),
128: (1, 0),
256: (2, 0),
512: (3, 0),
1024: (4, 0),
2048: (5, 0)
},
'down' : {
64 : (0, 0),
128: (1, 0),
256: (2, 0),
512: (3, 0),
1024: (4, 0),
2048: (5, 0)
}
},
'ft_down': {
'stretch' : {
64 : (0, 4),
128: (1, 3),
256: (2, 2),
512: (3, 1),
1024: (4, 0),
2048: (5, 0)
},
'down' : {
64 : (0, 4),
128: (1, 3),
256: (2, 2),
512: (3, 1),
1024: (4, 0),
2048: (5, 0)
}
},
'dilated': {
'stretch' : {
64 : (0, 4),
128: (1, 3),
256: (2, 2),
512: (3, 1),
1024: (4, 0),
2048: (5, 0)
},
'down' : {
64 : (0, 0),
128: (0, 0),
256: (0, 0),
512: (0, 0),
1024: (0, 0),
2048: (0, 0)
}
},
'mixed': {
'stretch' : {
64 : (0, 4),
128: (1, 3),
256: (2, 2),
512: (3, 1),
1024: (4, 0),
2048: (5, 0)
},
'down' : {
64 : (0, 0),
128: (1, 0),
256: (2, 0),
512: (3, 0),
1024: (4, 0),
2048: (5, 0)
}
},
}
class DiscriminatorMagFree(SpecDiscriminatorBase):
def __init__(self,
resolution,
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
num_channels=16,
max_channels=256,
num_layers=5,
use_spectral_norm=False,
design=None):
if design is None:
raise ValueError('error: arch required in DiscriminatorMagFree')
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
stretch = configs[design]['stretch'][resolution[0]]
down = configs[design]['down'][resolution[0]]
self.num_channels = num_channels
self.num_channels_max = max_channels
self.num_layers = num_layers
self.stretch = stretch
self.down = down
layers = []
plan = create_3x3_conv_plan(num_layers + 1, stretch[0], down[0], stretch[1], down[1])
in_channels = 1 + 2
out_channels = self.num_channels
for i in range(self.num_layers):
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=plan[i][0], dilation=plan[i][1], padding=plan[i][2])),
nn.ReLU(inplace=True)
)
)
in_channels = out_channels + 2
# product over strides
channel_factor = plan[i][0][0] * plan[i][0][1]
out_channels = min(channel_factor * out_channels, self.num_channels_max)
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, 1, (3, 3), stride=plan[-1][0], dilation=plan[-1][1], padding=plan[-1][2])),
nn.Sigmoid()
)
)
# for layer in layers:
# print(layer)
# print("end\n\n")
super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
# bias biases
bias_val = 0.1
with torch.no_grad():
for name, weight in self.named_parameters():
if 'bias' in name:
weight = weight + bias_val
class DiscriminatorMagFreqPosition(SpecDiscriminatorBase):
def __init__(self,
resolution,
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
num_channels=16,
max_channels=512,
num_layers=5,
use_spectral_norm=False):
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.num_channels = num_channels
self.num_channels_max = max_channels
self.num_layers = num_layers
layers = []
stride = (2, 1)
padding= (1, 1)
in_channels = 1 + 2
out_channels = self.num_channels
for _ in range(self.num_layers):
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
nn.LeakyReLU(0.2, inplace=True)
)
)
in_channels = out_channels + 2
out_channels = min(2 * out_channels, self.num_channels_max)
layers.append(
nn.Sequential(
FrequencyPositionalEmbedding(),
norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding))
)
)
super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
class DiscriminatorMag2dPositional(SpecDiscriminatorBase):
def __init__(self,
resolution,
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
num_channels=16,
max_channels=512,
num_layers=5,
d=5,
use_spectral_norm=False):
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.resolution = resolution
self.num_channels = num_channels
self.num_channels_max = max_channels
self.num_layers = num_layers
self.d = d
embedding_dim = 4 * d
layers = []
stride = (2, 2)
padding= (1, 1)
in_channels = 1 + embedding_dim
out_channels = self.num_channels
for _ in range(self.num_layers):
layers.append(
nn.Sequential(
PositionalEmbedding2D(d),
norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
nn.LeakyReLU(0.2, inplace=True)
)
)
in_channels = out_channels + embedding_dim
out_channels = min(2 * out_channels, self.num_channels_max)
layers.append(
nn.Sequential(
PositionalEmbedding2D(),
norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding))
)
)
super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
class DiscriminatorMag(SpecDiscriminatorBase):
def __init__(self,
resolution,
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
num_channels=32,
num_layers=5,
use_spectral_norm=False):
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
self.num_channels = num_channels
self.num_layers = num_layers
layers = []
stride = (1, 1)
padding= (1, 1)
in_channels = 1
out_channels = self.num_channels
for _ in range(self.num_layers):
layers.append(
nn.Sequential(
norm_f(nn.Conv2d(in_channels, out_channels, (3, 3), stride=stride, padding=padding)),
nn.LeakyReLU(0.2, inplace=True)
)
)
in_channels = out_channels
layers.append(norm_f(nn.Conv2d(in_channels, 1, (3, 3), padding=padding)))
super().__init__(layers=layers, resolution=resolution, fs=fs, freq_roi=freq_roi, noise_gain=noise_gain)
discriminators = {
'mag': DiscriminatorMag,
'freqpos': DiscriminatorMagFreqPosition,
'2dpos': DiscriminatorMag2dPositional,
'experimental': DiscriminatorExperimental,
'free': DiscriminatorMagFree
}
class TFDMultiResolutionDiscriminator(torch.nn.Module):
def __init__(self,
fft_sizes_16k=[64, 128, 256, 512, 1024, 2048],
architecture='mag',
fs=16000,
freq_roi=[50, 7400],
noise_gain=0,
use_spectral_norm=False,
**kwargs):
super().__init__()
fft_sizes = [int(round(fft_size_16k * fs / 16000)) for fft_size_16k in fft_sizes_16k]
resolutions = [[n_fft, n_fft // 4, n_fft] for n_fft in fft_sizes]
Disc = discriminators[architecture]
discs = [Disc(resolutions[i], fs=fs, freq_roi=freq_roi, noise_gain=noise_gain, use_spectral_norm=use_spectral_norm, **kwargs) for i in range(len(resolutions))]
self.discriminators = nn.ModuleList(discs)
def forward(self, y):
outputs = []
for disc in self.discriminators:
outputs.append(disc(y))
return outputs
class FWGAN_disc_wrapper(nn.Module):
def __init__(self, disc):
super().__init__()
self.disc = disc
def forward(self, y, y_hat):
out_real = self.disc(y)
out_fake = self.disc(y_hat)
y_d_rs = []
y_d_gs = []
fmap_rs = []
fmap_gs = []
for y_real, y_fake in zip(out_real, out_fake):
y_d_rs.append(y_real[-1])
y_d_gs.append(y_fake[-1])
fmap_rs.append(y_real[:-1])
fmap_gs.append(y_fake[:-1])
return y_d_rs, y_d_gs, fmap_rs, fmap_gs