opus/dnn/torch/fwgan/dump_model_weights.py
2023-08-01 21:58:08 +02:00

88 lines
3 KiB
Python

import os
import sys
import argparse
import torch
from torch import nn
sys.path.append(os.path.join(os.path.split(__file__)[0], '../weight-exchange'))
import wexchange.torch
from models import model_dict
unquantized = [
'bfcc_with_corr_upsampler.fc',
'cont_net.0',
'fwc6.cont_fc.0',
'fwc6.fc.0',
'fwc6.fc.1.gate',
'fwc7.cont_fc.0',
'fwc7.fc.0',
'fwc7.fc.1.gate'
]
description=f"""
This is an unsafe dumping script for FWGAN models. It assumes that all weights are included in Linear, Conv1d or GRU layer
and will fail to export any other weights.
Furthermore, the quanitze option relies on the following explicit list of layers to be excluded:
{unquantized}.
Modify this script manually if adjustments are needed.
"""
parser = argparse.ArgumentParser(description=description)
parser.add_argument('model', choices=['fwgan400', 'fwgan500'], help='model name')
parser.add_argument('weightfile', type=str, help='weight file path')
parser.add_argument('export_folder', type=str)
parser.add_argument('--export-filename', type=str, default='fwgan_data', help='filename for source and header file (.c and .h will be added), defaults to fwgan_data')
parser.add_argument('--struct-name', type=str, default='FWGAN', help='name for C struct, defaults to FWGAN')
parser.add_argument('--quantize', action='store_true', help='apply quantization')
if __name__ == "__main__":
args = parser.parse_args()
model = model_dict[args.model]()
print(f"loading weights from {args.weightfile}...")
saved_gen= torch.load(args.weightfile, map_location='cpu')
model.load_state_dict(saved_gen)
def _remove_weight_norm(m):
try:
torch.nn.utils.remove_weight_norm(m)
except ValueError: # this module didn't have weight norm
return
model.apply(_remove_weight_norm)
print("dumping model...")
quantize_model=args.quantize
output_folder = args.export_folder
os.makedirs(output_folder, exist_ok=True)
writer = wexchange.c_export.c_writer.CWriter(os.path.join(output_folder, args.export_filename), model_struct_name=args.struct_name)
for name, module in model.named_modules():
if quantize_model:
quantize=name not in unquantized
scale = None if quantize else 1/128
else:
quantize=False
scale=1/128
if isinstance(module, nn.Linear):
print(f"dumping linear layer {name}...")
wexchange.torch.dump_torch_dense_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale)
if isinstance(module, nn.Conv1d):
print(f"dumping conv1d layer {name}...")
wexchange.torch.dump_torch_conv1d_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale)
if isinstance(module, nn.GRU):
print(f"dumping GRU layer {name}...")
wexchange.torch.dump_torch_gru_weights(writer, module, name.replace('.', '_'), quantize=quantize, scale=scale, recurrent_scale=scale)
writer.close()