mirror of
https://github.com/xiph/opus.git
synced 2025-06-02 16:47:42 +00:00
1074 lines
51 KiB
C
1074 lines
51 KiB
C
/***********************************************************************
|
|
Copyright (c) 2021 Google Inc.
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
- Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
- Neither the name of Internet Society, IETF or IETF Trust, nor the
|
|
names of specific contributors, may be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
***********************************************************************/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#ifdef OPUS_CHECK_ASM
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "opus_defines.h"
|
|
#include <immintrin.h>
|
|
|
|
#include "main.h"
|
|
#include "stack_alloc.h"
|
|
#include "NSQ.h"
|
|
#include "celt/x86/x86cpu.h"
|
|
|
|
/* Returns TRUE if all assumptions met */
|
|
static OPUS_INLINE int verify_assumptions(const silk_encoder_state *psEncC)
|
|
{
|
|
/* This optimization is based on these assumptions */
|
|
/* These assumptions are fundamental and hence assert are */
|
|
/* used. Should any assert triggers, we have to re-visit */
|
|
/* all related code to make sure it still functions the */
|
|
/* same as the C implementation. */
|
|
silk_assert(MAX_DEL_DEC_STATES <= 4 &&
|
|
MAX_FRAME_LENGTH % 4 == 0 &&
|
|
MAX_SUB_FRAME_LENGTH % 4 == 0 &&
|
|
LTP_MEM_LENGTH_MS % 4 == 0 );
|
|
silk_assert(psEncC->fs_kHz == 8 ||
|
|
psEncC->fs_kHz == 12 ||
|
|
psEncC->fs_kHz == 16 );
|
|
silk_assert(psEncC->nb_subfr <= MAX_NB_SUBFR &&
|
|
psEncC->nb_subfr > 0 );
|
|
silk_assert(psEncC->nStatesDelayedDecision <= MAX_DEL_DEC_STATES &&
|
|
psEncC->nStatesDelayedDecision > 0 );
|
|
silk_assert(psEncC->ltp_mem_length == psEncC->fs_kHz * LTP_MEM_LENGTH_MS);
|
|
|
|
/* Regressions were observed on certain AMD Zen CPUs when */
|
|
/* nStatesDelayedDecision is 1 or 2. Ideally we should detect */
|
|
/* these CPUs and enable this optimization on others; however, */
|
|
/* there is no good way to do so under current OPUS framework. */
|
|
return psEncC->nStatesDelayedDecision == 3 ||
|
|
psEncC->nStatesDelayedDecision == 4;
|
|
}
|
|
|
|
/* Intrinsics not defined on MSVC */
|
|
#ifdef _MSC_VER
|
|
#include <intsafe.h>
|
|
static inline int __builtin_sadd_overflow(opus_int32 a, opus_int32 b, opus_int32* res)
|
|
{
|
|
*res = a+b;
|
|
return (*res ^ a) & (*res ^ b) & 0x80000000;
|
|
}
|
|
static inline int __builtin_ctz(unsigned int x)
|
|
{
|
|
DWORD res = 0;
|
|
return _BitScanForward(&res, x) ? res : 32;
|
|
}
|
|
#endif
|
|
|
|
static OPUS_INLINE __m128i silk_cvtepi64_epi32_high(__m256i num)
|
|
{
|
|
return _mm256_castsi256_si128(_mm256_permutevar8x32_epi32(num, _mm256_set_epi32(0, 0, 0, 0, 7, 5, 3, 1)));
|
|
}
|
|
|
|
static OPUS_INLINE opus_int16 silk_sat16(opus_int32 num)
|
|
{
|
|
num = num > silk_int16_MAX ? silk_int16_MAX : num;
|
|
num = num < silk_int16_MIN ? silk_int16_MIN : num;
|
|
return num;
|
|
}
|
|
|
|
static OPUS_INLINE opus_int32 silk_sar_round_32(opus_int32 a, int bits)
|
|
{
|
|
silk_assert(bits > 0 && bits < 31);
|
|
a += 1 << (bits-1);
|
|
return a >> bits;
|
|
}
|
|
|
|
static OPUS_INLINE opus_int64 silk_sar_round_smulww(opus_int32 a, opus_int32 b, int bits)
|
|
{
|
|
silk_assert(bits > 0 && bits < 63);
|
|
#ifdef OPUS_CHECK_ASM
|
|
return silk_RSHIFT_ROUND(silk_SMULWW(a, b), bits);
|
|
#else
|
|
/* This code is more correct, but it won't overflow like the C code in some rare cases. */
|
|
silk_assert(bits > 0 && bits < 63);
|
|
opus_int64 t = ((opus_int64)a) * ((opus_int64)b);
|
|
bits += 16;
|
|
t += 1ull << (bits-1);
|
|
return t >> bits;
|
|
#endif
|
|
}
|
|
|
|
static OPUS_INLINE opus_int32 silk_add_sat32(opus_int32 a, opus_int32 b)
|
|
{
|
|
opus_int32 sum;
|
|
if (__builtin_sadd_overflow(a, b, &sum))
|
|
{
|
|
return a >= 0 ? silk_int32_MAX : silk_int32_MIN;
|
|
}
|
|
return sum;
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_srai_round_epi32(__m128i a, int bits)
|
|
{
|
|
silk_assert(bits > 0 && bits < 31);
|
|
return _mm_srai_epi32(_mm_add_epi32(a, _mm_set1_epi32(1 << (bits - 1))), bits);
|
|
}
|
|
|
|
/* add/subtract with output saturated */
|
|
static OPUS_INLINE __m128i silk_mm_add_sat_epi32(__m128i a, __m128i b)
|
|
{
|
|
__m128i r = _mm_add_epi32(a, b);
|
|
__m128i OF = _mm_and_si128(_mm_xor_si128(a, r), _mm_xor_si128(b, r)); /* OF = (sum ^ a) & (sum ^ b) */
|
|
__m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
|
|
return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
|
|
}
|
|
static OPUS_INLINE __m128i silk_mm_sub_sat_epi32(__m128i a, __m128i b)
|
|
{
|
|
__m128i r = _mm_sub_epi32(a, b);
|
|
__m128i OF = _mm_andnot_si128(_mm_xor_si128(b, r), _mm_xor_si128(a, r)); /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
|
|
__m128i SAT = _mm_add_epi32(_mm_srli_epi32(a, 31), _mm_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
|
|
return _mm_blendv_epi8(r, SAT, _mm_srai_epi32(OF, 31));
|
|
}
|
|
static OPUS_INLINE __m256i silk_mm256_sub_sat_epi32(__m256i a, __m256i b)
|
|
{
|
|
__m256i r = _mm256_sub_epi32(a, b);
|
|
__m256i OF = _mm256_andnot_si256(_mm256_xor_si256(b, r), _mm256_xor_si256(a, r)); /* OF = (sum ^ a) & (sum ^ ~b) = (sum ^ a) & ~(sum ^ b) */
|
|
__m256i SAT = _mm256_add_epi32(_mm256_srli_epi32(a, 31), _mm256_set1_epi32(0x7FFFFFFF)); /* SAT = (a >> 31) + 0x7FFFFFFF */
|
|
return _mm256_blendv_epi8(r, SAT, _mm256_srai_epi32(OF, 31));
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_limit_epi32(__m128i num, opus_int32 limit1, opus_int32 limit2)
|
|
{
|
|
opus_int32 lo = limit1 < limit2 ? limit1 : limit2;
|
|
opus_int32 hi = limit1 > limit2 ? limit1 : limit2;
|
|
|
|
num = _mm_min_epi32(num, _mm_set1_epi32(hi));
|
|
num = _mm_max_epi32(num, _mm_set1_epi32(lo));
|
|
return num;
|
|
}
|
|
|
|
/* cond < 0 ? -num : num */
|
|
static OPUS_INLINE __m128i silk_mm_sign_epi32(__m128i num, __m128i cond)
|
|
{
|
|
return _mm_sign_epi32(num, _mm_or_si128(cond, _mm_set1_epi32(1)));
|
|
}
|
|
static OPUS_INLINE __m256i silk_mm256_sign_epi32(__m256i num, __m256i cond)
|
|
{
|
|
return _mm256_sign_epi32(num, _mm256_or_si256(cond, _mm256_set1_epi32(1)));
|
|
}
|
|
|
|
/* (a32 * b32) >> 16 */
|
|
static OPUS_INLINE __m128i silk_mm_smulww_epi32(__m128i a, opus_int32 b)
|
|
{
|
|
return silk_cvtepi64_epi32_high(_mm256_slli_epi64(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(b)), 16));
|
|
}
|
|
|
|
/* (a32 * (opus_int32)((opus_int16)(b32))) >> 16 output have to be 32bit int */
|
|
static OPUS_INLINE __m128i silk_mm_smulwb_epi32(__m128i a, opus_int32 b)
|
|
{
|
|
return silk_cvtepi64_epi32_high(_mm256_mul_epi32(_mm256_cvtepi32_epi64(a), _mm256_set1_epi32(silk_LSHIFT(b, 16))));
|
|
}
|
|
|
|
/* (opus_int32)((opus_int16)(a3))) * (opus_int32)((opus_int16)(b32)) output have to be 32bit int */
|
|
static OPUS_INLINE __m256i silk_mm256_smulbb_epi32(__m256i a, __m256i b)
|
|
{
|
|
const char FF = (char)0xFF;
|
|
__m256i msk = _mm256_set_epi8(
|
|
FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0,
|
|
FF, FF, FF, FF, FF, FF, FF, FF, 13, 12, 9, 8, 5, 4, 1, 0);
|
|
__m256i lo = _mm256_mullo_epi16(a, b);
|
|
__m256i hi = _mm256_mulhi_epi16(a, b);
|
|
lo = _mm256_shuffle_epi8(lo, msk);
|
|
hi = _mm256_shuffle_epi8(hi, msk);
|
|
return _mm256_unpacklo_epi16(lo, hi);
|
|
}
|
|
|
|
static OPUS_INLINE __m256i silk_mm256_reverse_epi32(__m256i v)
|
|
{
|
|
v = _mm256_shuffle_epi32(v, 0x1B);
|
|
v = _mm256_permute4x64_epi64(v, 0x4E);
|
|
return v;
|
|
}
|
|
|
|
static OPUS_INLINE opus_int32 silk_mm256_hsum_epi32(__m256i v)
|
|
{
|
|
__m128i sum = _mm_add_epi32(_mm256_extracti128_si256(v, 1), _mm256_extracti128_si256(v, 0));
|
|
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E));
|
|
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1));
|
|
return _mm_cvtsi128_si32(sum);
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_hmin_epi32(__m128i num)
|
|
{
|
|
num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2301 */
|
|
num = _mm_min_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
|
|
return num;
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_hmax_epi32(__m128i num)
|
|
{
|
|
num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0x4E)); /* 0123 -> 2310 */
|
|
num = _mm_max_epi32(num, _mm_shuffle_epi32(num, 0xB1)); /* 0123 -> 1032 */
|
|
return num;
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_mask_hmin_epi32(__m128i num, __m128i mask)
|
|
{
|
|
num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MAX), mask);
|
|
return silk_mm_hmin_epi32(num);
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm_mask_hmax_epi32(__m128i num, __m128i mask)
|
|
{
|
|
num = _mm_blendv_epi8(num, _mm_set1_epi32(silk_int32_MIN), mask);
|
|
return silk_mm_hmax_epi32(num);
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_mm256_rand_epi32(__m128i seed)
|
|
{
|
|
seed = _mm_mullo_epi32(seed, _mm_set1_epi32(RAND_MULTIPLIER));
|
|
seed = _mm_add_epi32(seed, _mm_set1_epi32(RAND_INCREMENT));
|
|
return seed;
|
|
}
|
|
|
|
static OPUS_INLINE opus_int32 silk_index_of_first_equal_epi32(__m128i a, __m128i b)
|
|
{
|
|
unsigned int mask = _mm_movemask_epi8(_mm_cmpeq_epi32(a, b)) & 0x1111;
|
|
silk_assert(mask != 0);
|
|
return __builtin_ctz(mask) >> 2;
|
|
}
|
|
|
|
static __m128i silk_index_to_selector(opus_int32 index)
|
|
{
|
|
silk_assert(index < 4);
|
|
index <<= 2;
|
|
return _mm_set_epi8(
|
|
index + 3, index + 2, index + 1, index + 0,
|
|
index + 3, index + 2, index + 1, index + 0,
|
|
index + 3, index + 2, index + 1, index + 0,
|
|
index + 3, index + 2, index + 1, index + 0);
|
|
}
|
|
|
|
static opus_int32 silk_select_winner(__m128i num, __m128i selector)
|
|
{
|
|
return _mm_cvtsi128_si32(_mm_shuffle_epi8(num, selector));
|
|
}
|
|
|
|
typedef struct
|
|
{
|
|
__m128i RandState;
|
|
__m128i Q_Q10;
|
|
__m128i Xq_Q14;
|
|
__m128i Pred_Q15;
|
|
__m128i Shape_Q14;
|
|
} NSQ_del_dec_sample_struct;
|
|
|
|
typedef struct
|
|
{
|
|
__m128i sLPC_Q14[MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH];
|
|
__m128i LF_AR_Q14;
|
|
__m128i Seed;
|
|
__m128i SeedInit;
|
|
__m128i RD_Q10;
|
|
__m128i Diff_Q14;
|
|
__m128i sAR2_Q14[MAX_SHAPE_LPC_ORDER];
|
|
NSQ_del_dec_sample_struct Samples[DECISION_DELAY];
|
|
} NSQ_del_dec_struct;
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct *psDelDec, /* I/O Delayed decision states */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O Input scaled with 1/Gain in Q10 */
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I Subframe number */
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const opus_int32 Gains_Q16[MAX_NB_SUBFR], /* I */
|
|
const opus_int pitchL[MAX_NB_SUBFR], /* I Pitch lag */
|
|
const opus_int signal_type, /* I Signal type */
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
);
|
|
|
|
/*******************************************/
|
|
/* LPC analysis filter */
|
|
/* NB! State is kept internally and the */
|
|
/* filter always starts with zero state */
|
|
/* first d output samples are set to zero */
|
|
/*******************************************/
|
|
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
|
|
opus_int16 *out, /* O Output signal */
|
|
const opus_int16 *in, /* I Input signal */
|
|
const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
|
|
const opus_int32 len, /* I Signal length */
|
|
const opus_int32 order /* I Filter order */
|
|
);
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct psDelDec[], /* I/O Delayed decision states */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O Gain delay buffer */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int subfr, /* I Subframe number */
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
opus_int warping_Q16, /* I */
|
|
__m128i MaskDelDec, /* I Mask of states in decision tree */
|
|
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
|
opus_int decisionDelay /* I */
|
|
);
|
|
|
|
void silk_NSQ_del_dec_avx2(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
SideInfoIndices *psIndices, /* I/O Quantization Indices */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int8 pulses[], /* O Quantized pulse signal */
|
|
const opus_int16 *PredCoef_Q12, /* I Short term prediction coefs */
|
|
const opus_int16 LTPCoef_Q14[LTP_ORDER * MAX_NB_SUBFR], /* I Long term prediction coefs */
|
|
const opus_int16 AR_Q13[MAX_NB_SUBFR * MAX_SHAPE_LPC_ORDER], /* I Noise shaping coefs */
|
|
const opus_int HarmShapeGain_Q14[MAX_NB_SUBFR], /* I Long term shaping coefs */
|
|
const opus_int Tilt_Q14[MAX_NB_SUBFR], /* I Spectral tilt */
|
|
const opus_int32 LF_shp_Q14[MAX_NB_SUBFR], /* I Low frequency shaping coefs */
|
|
const opus_int32 Gains_Q16[MAX_NB_SUBFR], /* I Quantization step sizes */
|
|
const opus_int32 pitchL[MAX_NB_SUBFR], /* I Pitch lags */
|
|
const opus_int Lambda_Q10, /* I Rate/distortion tradeoff */
|
|
const opus_int LTP_scale_Q14 /* I LTP state scaling */
|
|
)
|
|
{
|
|
#ifdef OPUS_CHECK_ASM
|
|
silk_nsq_state NSQ_c;
|
|
SideInfoIndices psIndices_c;
|
|
opus_int8 pulses_c[MAX_FRAME_LENGTH];
|
|
const opus_int8 *const pulses_a = pulses;
|
|
|
|
silk_memcpy(&NSQ_c, NSQ, sizeof(NSQ_c));
|
|
silk_memcpy(&psIndices_c, psIndices, sizeof(psIndices_c));
|
|
silk_memcpy(pulses_c, pulses, sizeof(pulses_c));
|
|
silk_NSQ_del_dec_c(psEncC, &NSQ_c, &psIndices_c, x16, pulses_c, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16,
|
|
pitchL, Lambda_Q10, LTP_scale_Q14);
|
|
#endif
|
|
|
|
if (!verify_assumptions(psEncC))
|
|
{
|
|
silk_NSQ_del_dec_c(psEncC, NSQ, psIndices, x16, pulses, PredCoef_Q12, LTPCoef_Q14, AR_Q13, HarmShapeGain_Q14, Tilt_Q14, LF_shp_Q14, Gains_Q16, pitchL, Lambda_Q10, LTP_scale_Q14);
|
|
return;
|
|
}
|
|
|
|
opus_int i, k, lag, start_idx, LSF_interpolation_flag, Winner_ind, subfr;
|
|
opus_int last_smple_idx, smpl_buf_idx, decisionDelay;
|
|
const opus_int16 *A_Q12, *B_Q14, *AR_shp_Q13;
|
|
opus_int16 *pxq;
|
|
VARDECL(opus_int32, sLTP_Q15);
|
|
VARDECL(opus_int16, sLTP);
|
|
opus_int32 HarmShapeFIRPacked_Q14;
|
|
opus_int offset_Q10;
|
|
opus_int32 Gain_Q10;
|
|
opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH];
|
|
opus_int32 delayedGain_Q10[DECISION_DELAY];
|
|
NSQ_del_dec_struct psDelDec = {0};
|
|
NSQ_del_dec_sample_struct *psSample;
|
|
__m128i RDmin_Q10, MaskDelDec, Winner_selector;
|
|
SAVE_STACK;
|
|
|
|
MaskDelDec = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFFFFF00ul << ((psEncC->nStatesDelayedDecision - 1) << 3)));
|
|
|
|
/* Set unvoiced lag to the previous one, overwrite later for voiced */
|
|
lag = NSQ->lagPrev;
|
|
|
|
silk_assert(NSQ->prev_gain_Q16 != 0);
|
|
psDelDec.Seed = _mm_and_si128(
|
|
_mm_add_epi32(_mm_set_epi32(3, 2, 1, 0), _mm_set1_epi32(psIndices->Seed)),
|
|
_mm_set1_epi32(3));
|
|
psDelDec.SeedInit = psDelDec.Seed;
|
|
psDelDec.RD_Q10 = _mm_setzero_si128();
|
|
psDelDec.LF_AR_Q14 = _mm_set1_epi32(NSQ->sLF_AR_shp_Q14);
|
|
psDelDec.Diff_Q14 = _mm_set1_epi32(NSQ->sDiff_shp_Q14);
|
|
psDelDec.Samples[0].Shape_Q14 = _mm_set1_epi32(NSQ->sLTP_shp_Q14[psEncC->ltp_mem_length - 1]);
|
|
for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
|
|
{
|
|
psDelDec.sLPC_Q14[i] = _mm_set1_epi32(NSQ->sLPC_Q14[i]);
|
|
}
|
|
for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
|
|
{
|
|
psDelDec.sAR2_Q14[i] = _mm_set1_epi32(NSQ->sAR2_Q14[i]);
|
|
}
|
|
|
|
offset_Q10 = silk_Quantization_Offsets_Q10[psIndices->signalType >> 1][psIndices->quantOffsetType];
|
|
smpl_buf_idx = 0; /* index of oldest samples */
|
|
|
|
decisionDelay = silk_min_int(DECISION_DELAY, psEncC->subfr_length);
|
|
|
|
/* For voiced frames limit the decision delay to lower than the pitch lag */
|
|
if (psIndices->signalType == TYPE_VOICED)
|
|
{
|
|
for (k = 0; k < psEncC->nb_subfr; k++)
|
|
{
|
|
decisionDelay = silk_min_int(decisionDelay, pitchL[k] - LTP_ORDER / 2 - 1);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (lag > 0)
|
|
{
|
|
decisionDelay = silk_min_int(decisionDelay, lag - LTP_ORDER / 2 - 1);
|
|
}
|
|
}
|
|
|
|
if (psIndices->NLSFInterpCoef_Q2 == 4)
|
|
{
|
|
LSF_interpolation_flag = 0;
|
|
}
|
|
else
|
|
{
|
|
LSF_interpolation_flag = 1;
|
|
}
|
|
|
|
ALLOC(sLTP_Q15, psEncC->ltp_mem_length + psEncC->frame_length, opus_int32);
|
|
ALLOC(sLTP, psEncC->ltp_mem_length + psEncC->frame_length, opus_int16);
|
|
/* Set up pointers to start of sub frame */
|
|
pxq = &NSQ->xq[psEncC->ltp_mem_length];
|
|
NSQ->sLTP_shp_buf_idx = psEncC->ltp_mem_length;
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
subfr = 0;
|
|
for (k = 0; k < psEncC->nb_subfr; k++)
|
|
{
|
|
A_Q12 = &PredCoef_Q12[((k >> 1) | (1 ^ LSF_interpolation_flag)) * MAX_LPC_ORDER];
|
|
B_Q14 = <PCoef_Q14[k * LTP_ORDER];
|
|
AR_shp_Q13 = &AR_Q13[k * MAX_SHAPE_LPC_ORDER];
|
|
|
|
/* Noise shape parameters */
|
|
silk_assert(HarmShapeGain_Q14[k] >= 0);
|
|
HarmShapeFIRPacked_Q14 = silk_RSHIFT( HarmShapeGain_Q14[ k ], 2 );
|
|
HarmShapeFIRPacked_Q14 |= silk_LSHIFT( (opus_int32)silk_RSHIFT( HarmShapeGain_Q14[ k ], 1 ), 16 );
|
|
|
|
NSQ->rewhite_flag = 0;
|
|
if (psIndices->signalType == TYPE_VOICED)
|
|
{
|
|
/* Voiced */
|
|
lag = pitchL[k];
|
|
|
|
/* Re-whitening */
|
|
if ((k & (3 ^ (LSF_interpolation_flag << 1))) == 0)
|
|
{
|
|
if (k == 2)
|
|
{
|
|
/* RESET DELAYED DECISIONS */
|
|
/* Find winner */
|
|
RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
|
|
Winner_ind = silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10);
|
|
Winner_selector = silk_index_to_selector(Winner_ind);
|
|
psDelDec.RD_Q10 = _mm_add_epi32(
|
|
psDelDec.RD_Q10,
|
|
_mm_blendv_epi8(
|
|
_mm_set1_epi32(silk_int32_MAX >> 4),
|
|
_mm_setzero_si128(),
|
|
_mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(Winner_ind << 3)))));
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
for (i = 0; i < decisionDelay; i++)
|
|
{
|
|
last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
|
|
psSample = &psDelDec.Samples[last_smple_idx];
|
|
pulses[i - decisionDelay] =
|
|
(opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
|
|
pxq[i - decisionDelay] =
|
|
silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gains_Q16[1], 14));
|
|
NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
|
|
silk_select_winner(psSample->Shape_Q14, Winner_selector);
|
|
}
|
|
|
|
subfr = 0;
|
|
}
|
|
|
|
/* Rewhiten with new A coefs */
|
|
start_idx = psEncC->ltp_mem_length - lag - psEncC->predictLPCOrder - LTP_ORDER / 2;
|
|
silk_assert(start_idx > 0);
|
|
|
|
silk_LPC_analysis_filter_avx2(&sLTP[start_idx], &NSQ->xq[start_idx + k * psEncC->subfr_length],
|
|
A_Q12, psEncC->ltp_mem_length - start_idx, psEncC->predictLPCOrder);
|
|
|
|
NSQ->sLTP_buf_idx = psEncC->ltp_mem_length;
|
|
NSQ->rewhite_flag = 1;
|
|
}
|
|
}
|
|
|
|
silk_nsq_del_dec_scale_states_avx2(psEncC, NSQ, &psDelDec, x16, x_sc_Q10, sLTP, sLTP_Q15, k,
|
|
LTP_scale_Q14, Gains_Q16, pitchL, psIndices->signalType, decisionDelay);
|
|
|
|
silk_noise_shape_quantizer_del_dec_avx2(NSQ, &psDelDec, psIndices->signalType, x_sc_Q10, pulses, pxq, sLTP_Q15,
|
|
delayedGain_Q10, A_Q12, B_Q14, AR_shp_Q13, lag, HarmShapeFIRPacked_Q14, Tilt_Q14[k], LF_shp_Q14[k],
|
|
Gains_Q16[k], Lambda_Q10, offset_Q10, psEncC->subfr_length, subfr++, psEncC->shapingLPCOrder,
|
|
psEncC->predictLPCOrder, psEncC->warping_Q16, MaskDelDec, &smpl_buf_idx, decisionDelay);
|
|
|
|
x16 += psEncC->subfr_length;
|
|
pulses += psEncC->subfr_length;
|
|
pxq += psEncC->subfr_length;
|
|
}
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = silk_mm_mask_hmin_epi32(psDelDec.RD_Q10, MaskDelDec);
|
|
Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, psDelDec.RD_Q10));
|
|
|
|
/* Copy final part of signals from winner state to output and long-term filter states */
|
|
psIndices->Seed = silk_select_winner(psDelDec.SeedInit, Winner_selector);
|
|
last_smple_idx = smpl_buf_idx + decisionDelay;
|
|
Gain_Q10 = Gains_Q16[psEncC->nb_subfr - 1] >> 6;
|
|
for (i = 0; i < decisionDelay; i++)
|
|
{
|
|
last_smple_idx = (last_smple_idx + DECISION_DELAY - 1) % DECISION_DELAY;
|
|
psSample = &psDelDec.Samples[last_smple_idx];
|
|
|
|
pulses[i - decisionDelay] =
|
|
(opus_int8)silk_sar_round_32(silk_select_winner(psSample->Q_Q10, Winner_selector), 10);
|
|
pxq[i - decisionDelay] =
|
|
silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psSample->Xq_Q14, Winner_selector), Gain_Q10, 8));
|
|
NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay + i] =
|
|
silk_select_winner(psSample->Shape_Q14, Winner_selector);
|
|
}
|
|
for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
|
|
{
|
|
NSQ->sLPC_Q14[i] = silk_select_winner(psDelDec.sLPC_Q14[i], Winner_selector);
|
|
}
|
|
for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
|
|
{
|
|
NSQ->sAR2_Q14[i] = silk_select_winner(psDelDec.sAR2_Q14[i], Winner_selector);
|
|
}
|
|
|
|
/* Update states */
|
|
NSQ->sLF_AR_shp_Q14 = silk_select_winner(psDelDec.LF_AR_Q14, Winner_selector);
|
|
NSQ->sDiff_shp_Q14 = silk_select_winner(psDelDec.Diff_Q14, Winner_selector);
|
|
NSQ->lagPrev = pitchL[psEncC->nb_subfr - 1];
|
|
|
|
/* Save quantized speech signal */
|
|
silk_memmove(NSQ->xq, &NSQ->xq[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int16));
|
|
silk_memmove(NSQ->sLTP_shp_Q14, &NSQ->sLTP_shp_Q14[psEncC->frame_length], psEncC->ltp_mem_length * sizeof(opus_int32));
|
|
|
|
#ifdef OPUS_CHECK_ASM
|
|
silk_assert(!memcmp(&NSQ_c, NSQ, sizeof(NSQ_c)));
|
|
silk_assert(!memcmp(&psIndices_c, psIndices, sizeof(psIndices_c)));
|
|
silk_assert(!memcmp(pulses_c, pulses_a, sizeof(pulses_c)));
|
|
#endif
|
|
|
|
RESTORE_STACK;
|
|
}
|
|
|
|
static OPUS_INLINE __m128i silk_noise_shape_quantizer_short_prediction_x4(const __m128i *buf32, const opus_int16 *coef16, opus_int order)
|
|
{
|
|
__m256i out;
|
|
silk_assert(order == 10 || order == 16);
|
|
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
out = _mm256_set1_epi32(order >> 1);
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-0]), _mm256_set1_epi32(silk_LSHIFT(coef16[0], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-1]), _mm256_set1_epi32(silk_LSHIFT(coef16[1], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-2]), _mm256_set1_epi32(silk_LSHIFT(coef16[2], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-3]), _mm256_set1_epi32(silk_LSHIFT(coef16[3], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-4]), _mm256_set1_epi32(silk_LSHIFT(coef16[4], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-5]), _mm256_set1_epi32(silk_LSHIFT(coef16[5], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-6]), _mm256_set1_epi32(silk_LSHIFT(coef16[6], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-7]), _mm256_set1_epi32(silk_LSHIFT(coef16[7], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-8]), _mm256_set1_epi32(silk_LSHIFT(coef16[8], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-9]), _mm256_set1_epi32(silk_LSHIFT(coef16[9], 16)))); /* High DWORD */
|
|
|
|
if (order == 16)
|
|
{
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-10]), _mm256_set1_epi32(silk_LSHIFT(coef16[10], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-11]), _mm256_set1_epi32(silk_LSHIFT(coef16[11], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-12]), _mm256_set1_epi32(silk_LSHIFT(coef16[12], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-13]), _mm256_set1_epi32(silk_LSHIFT(coef16[13], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-14]), _mm256_set1_epi32(silk_LSHIFT(coef16[14], 16)))); /* High DWORD */
|
|
out = _mm256_add_epi32(out, _mm256_mul_epi32(_mm256_cvtepi32_epi64(buf32[-15]), _mm256_set1_epi32(silk_LSHIFT(coef16[15], 16)))); /* High DWORD */
|
|
}
|
|
return silk_cvtepi64_epi32_high(out);
|
|
}
|
|
|
|
/******************************************/
|
|
/* Noise shape quantizer for one subframe */
|
|
/******************************************/
|
|
static OPUS_INLINE void silk_noise_shape_quantizer_del_dec_avx2(
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct *psDelDec, /* I/O Delayed decision states */
|
|
opus_int signalType, /* I Signal type */
|
|
const opus_int32 x_Q10[], /* I */
|
|
opus_int8 pulses[], /* O */
|
|
opus_int16 xq[], /* O */
|
|
opus_int32 sLTP_Q15[], /* I/O LTP filter state */
|
|
opus_int32 delayedGain_Q10[DECISION_DELAY], /* I/O Gain delay buffer */
|
|
const opus_int16 a_Q12[], /* I Short term prediction coefs */
|
|
const opus_int16 b_Q14[], /* I Long term prediction coefs */
|
|
const opus_int16 AR_shp_Q13[], /* I Noise shaping coefs */
|
|
opus_int lag, /* I Pitch lag */
|
|
opus_int32 HarmShapeFIRPacked_Q14, /* I */
|
|
opus_int Tilt_Q14, /* I Spectral tilt */
|
|
opus_int32 LF_shp_Q14, /* I */
|
|
opus_int32 Gain_Q16, /* I */
|
|
opus_int Lambda_Q10, /* I */
|
|
opus_int offset_Q10, /* I */
|
|
opus_int length, /* I Input length */
|
|
opus_int subfr, /* I Subframe number */
|
|
opus_int shapingLPCOrder, /* I Shaping LPC filter order */
|
|
opus_int predictLPCOrder, /* I Prediction filter order */
|
|
opus_int warping_Q16, /* I */
|
|
__m128i MaskDelDec, /* I Mask of states in decision tree */
|
|
opus_int *smpl_buf_idx, /* I/O Index to newest samples in buffers */
|
|
opus_int decisionDelay /* I */
|
|
)
|
|
{
|
|
int i;
|
|
opus_int32 *shp_lag_ptr = &NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - lag + HARM_SHAPE_FIR_TAPS / 2];
|
|
opus_int32 *pred_lag_ptr = &sLTP_Q15[NSQ->sLTP_buf_idx - lag + LTP_ORDER / 2];
|
|
opus_int32 Gain_Q10 = Gain_Q16 >> 6;
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
/* Perform common calculations used in all states */
|
|
/* NSQ_sample_struct */
|
|
/* Low 128 bits => 1st set */
|
|
/* High 128 bits => 2nd set */
|
|
int j;
|
|
__m256i SS_Q_Q10;
|
|
__m256i SS_RD_Q10;
|
|
__m256i SS_xq_Q14;
|
|
__m256i SS_LF_AR_Q14;
|
|
__m256i SS_Diff_Q14;
|
|
__m256i SS_sLTP_shp_Q14;
|
|
__m256i SS_LPC_exc_Q14;
|
|
__m256i exc_Q14;
|
|
__m256i q_Q10, rr_Q10, rd_Q10;
|
|
__m256i mask;
|
|
__m128i LPC_pred_Q14, n_AR_Q14;
|
|
__m128i RDmin_Q10, RDmax_Q10;
|
|
__m128i n_LF_Q14;
|
|
__m128i r_Q10, q1_Q0, q1_Q10, q2_Q10;
|
|
__m128i Winner_rand_state, Winner_selector;
|
|
__m128i tmp0, tmp1;
|
|
NSQ_del_dec_sample_struct *psLastSample, *psSample;
|
|
opus_int32 RDmin_ind, RDmax_ind, last_smple_idx;
|
|
opus_int32 LTP_pred_Q14, n_LTP_Q14;
|
|
|
|
/* Long-term prediction */
|
|
if (signalType == TYPE_VOICED)
|
|
{
|
|
/* Unrolled loop */
|
|
/* Avoids introducing a bias because silk_SMLAWB() always rounds to -inf */
|
|
LTP_pred_Q14 = 2;
|
|
LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-0], b_Q14[0]);
|
|
LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-1], b_Q14[1]);
|
|
LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-2], b_Q14[2]);
|
|
LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-3], b_Q14[3]);
|
|
LTP_pred_Q14 += silk_SMULWB(pred_lag_ptr[-4], b_Q14[4]);
|
|
LTP_pred_Q14 = silk_LSHIFT(LTP_pred_Q14, 1); /* Q13 -> Q14 */
|
|
pred_lag_ptr++;
|
|
}
|
|
else
|
|
{
|
|
LTP_pred_Q14 = 0;
|
|
}
|
|
|
|
/* Long-term shaping */
|
|
if (lag > 0)
|
|
{
|
|
/* Symmetric, packed FIR coefficients */
|
|
n_LTP_Q14 = silk_add_sat32(shp_lag_ptr[0], shp_lag_ptr[-2]);
|
|
n_LTP_Q14 = silk_SMULWB(n_LTP_Q14, HarmShapeFIRPacked_Q14);
|
|
n_LTP_Q14 = n_LTP_Q14 + silk_SMULWT(shp_lag_ptr[-1], HarmShapeFIRPacked_Q14);
|
|
n_LTP_Q14 = LTP_pred_Q14 - (silk_LSHIFT(n_LTP_Q14, 2)); /* Q12 -> Q14 */
|
|
shp_lag_ptr++;
|
|
}
|
|
else
|
|
{
|
|
n_LTP_Q14 = 0;
|
|
}
|
|
|
|
/* BEGIN Updating Delayed Decision States */
|
|
|
|
/* Generate dither */
|
|
psDelDec->Seed = silk_mm256_rand_epi32(psDelDec->Seed);
|
|
|
|
/* Short-term prediction */
|
|
LPC_pred_Q14 = silk_noise_shape_quantizer_short_prediction_x4(&psDelDec->sLPC_Q14[NSQ_LPC_BUF_LENGTH - 1 + i], a_Q12, predictLPCOrder);
|
|
LPC_pred_Q14 = _mm_slli_epi32(LPC_pred_Q14, 4); /* Q10 -> Q14 */
|
|
|
|
/* Noise shape feedback */
|
|
silk_assert(shapingLPCOrder > 0);
|
|
silk_assert((shapingLPCOrder & 1) == 0); /* check that order is even */
|
|
/* Output of lowpass section */
|
|
tmp0 = _mm_add_epi32(psDelDec->Diff_Q14, silk_mm_smulwb_epi32(psDelDec->sAR2_Q14[0], warping_Q16));
|
|
n_AR_Q14 = _mm_set1_epi32(shapingLPCOrder >> 1);
|
|
for (j = 0; j < shapingLPCOrder - 1; j++)
|
|
{
|
|
/* Output of allpass section */
|
|
tmp1 = psDelDec->sAR2_Q14[j];
|
|
psDelDec->sAR2_Q14[j] = tmp0;
|
|
n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[j]));
|
|
tmp0 = _mm_add_epi32(tmp1, silk_mm_smulwb_epi32(_mm_sub_epi32(psDelDec->sAR2_Q14[j + 1], tmp0), warping_Q16));
|
|
}
|
|
psDelDec->sAR2_Q14[shapingLPCOrder - 1] = tmp0;
|
|
n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(tmp0, AR_shp_Q13[shapingLPCOrder - 1]));
|
|
|
|
n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 1); /* Q11 -> Q12 */
|
|
n_AR_Q14 = _mm_add_epi32(n_AR_Q14, silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, Tilt_Q14)); /* Q12 */
|
|
n_AR_Q14 = _mm_slli_epi32(n_AR_Q14, 2); /* Q12 -> Q14 */
|
|
|
|
tmp0 = silk_mm_smulwb_epi32(psDelDec->Samples[*smpl_buf_idx].Shape_Q14, LF_shp_Q14); /* Q12 */
|
|
tmp1 = silk_mm_smulwb_epi32(psDelDec->LF_AR_Q14, LF_shp_Q14 >> 16); /* Q12 */
|
|
n_LF_Q14 = _mm_add_epi32(tmp0, tmp1); /* Q12 */
|
|
n_LF_Q14 = _mm_slli_epi32(n_LF_Q14, 2); /* Q12 -> Q14 */
|
|
|
|
/* Input minus prediction plus noise feedback */
|
|
/* r = x[ i ] - LTP_pred - LPC_pred + n_AR + n_Tilt + n_LF + n_LTP */
|
|
tmp0 = silk_mm_add_sat_epi32(n_AR_Q14, n_LF_Q14); /* Q14 */
|
|
tmp1 = _mm_add_epi32(_mm_set1_epi32(n_LTP_Q14), LPC_pred_Q14); /* Q13 */
|
|
tmp0 = silk_mm_sub_sat_epi32(tmp1, tmp0); /* Q13 */
|
|
tmp0 = silk_mm_srai_round_epi32(tmp0, 4); /* Q10 */
|
|
|
|
r_Q10 = _mm_sub_epi32(_mm_set1_epi32(x_Q10[i]), tmp0); /* residual error Q10 */
|
|
|
|
/* Flip sign depending on dither */
|
|
r_Q10 = silk_mm_sign_epi32(r_Q10, psDelDec->Seed);
|
|
r_Q10 = silk_mm_limit_epi32(r_Q10, -(31 << 10), 30 << 10);
|
|
|
|
/* Find two quantization level candidates and measure their rate-distortion */
|
|
q1_Q10 = _mm_sub_epi32(r_Q10, _mm_set1_epi32(offset_Q10));
|
|
q1_Q0 = _mm_srai_epi32(q1_Q10, 10);
|
|
if (Lambda_Q10 > 2048)
|
|
{
|
|
/* For aggressive RDO, the bias becomes more than one pulse. */
|
|
tmp0 = _mm_sub_epi32(_mm_abs_epi32(q1_Q10), _mm_set1_epi32(Lambda_Q10 / 2 - 512)); /* rdo_offset */
|
|
q1_Q0 = _mm_srai_epi32(q1_Q10, 31);
|
|
tmp1 = _mm_cmpgt_epi32(tmp0, _mm_setzero_si128());
|
|
tmp0 = _mm_srai_epi32(silk_mm_sign_epi32(tmp0, q1_Q10), 10);
|
|
q1_Q0 = _mm_blendv_epi8(q1_Q0, tmp0, tmp1);
|
|
}
|
|
|
|
tmp0 = _mm_sign_epi32(_mm_set1_epi32(QUANT_LEVEL_ADJUST_Q10), q1_Q0);
|
|
q1_Q10 = _mm_sub_epi32(_mm_slli_epi32(q1_Q0, 10), tmp0);
|
|
q1_Q10 = _mm_add_epi32(q1_Q10, _mm_set1_epi32(offset_Q10));
|
|
|
|
/* check if q1_Q0 is 0 or -1 */
|
|
tmp0 = _mm_add_epi32(_mm_srli_epi32(q1_Q0, 31), q1_Q0);
|
|
tmp1 = _mm_cmpeq_epi32(tmp0, _mm_setzero_si128());
|
|
tmp0 = _mm_blendv_epi8(_mm_set1_epi32(1024), _mm_set1_epi32(1024 - QUANT_LEVEL_ADJUST_Q10), tmp1);
|
|
q2_Q10 = _mm_add_epi32(q1_Q10, tmp0);
|
|
q_Q10 = _mm256_set_m128i(q2_Q10, q1_Q10);
|
|
|
|
rr_Q10 = _mm256_sub_epi32(_mm256_broadcastsi128_si256(r_Q10), q_Q10);
|
|
rd_Q10 = _mm256_abs_epi32(q_Q10);
|
|
rr_Q10 = silk_mm256_smulbb_epi32(rr_Q10, rr_Q10);
|
|
rd_Q10 = silk_mm256_smulbb_epi32(rd_Q10, _mm256_set1_epi32(Lambda_Q10));
|
|
rd_Q10 = _mm256_add_epi32(rd_Q10, rr_Q10);
|
|
rd_Q10 = _mm256_srai_epi32(rd_Q10, 10);
|
|
|
|
mask = _mm256_broadcastsi128_si256(_mm_cmplt_epi32(_mm256_extracti128_si256(rd_Q10, 0), _mm256_extracti128_si256(rd_Q10, 1)));
|
|
SS_RD_Q10 = _mm256_add_epi32(
|
|
_mm256_broadcastsi128_si256(psDelDec->RD_Q10),
|
|
_mm256_blendv_epi8(
|
|
_mm256_permute2x128_si256(rd_Q10, rd_Q10, 0x1),
|
|
rd_Q10,
|
|
mask));
|
|
SS_Q_Q10 = _mm256_blendv_epi8(
|
|
_mm256_permute2x128_si256(q_Q10, q_Q10, 0x1),
|
|
q_Q10,
|
|
mask);
|
|
|
|
/* Update states for best and second best quantization */
|
|
|
|
/* Quantized excitation */
|
|
exc_Q14 = silk_mm256_sign_epi32(_mm256_slli_epi32(SS_Q_Q10, 4), _mm256_broadcastsi128_si256(psDelDec->Seed));
|
|
|
|
/* Add predictions */
|
|
exc_Q14 = _mm256_add_epi32(exc_Q14, _mm256_set1_epi32(LTP_pred_Q14));
|
|
SS_LPC_exc_Q14 = _mm256_slli_epi32(exc_Q14, 1);
|
|
SS_xq_Q14 = _mm256_add_epi32(exc_Q14, _mm256_broadcastsi128_si256(LPC_pred_Q14));
|
|
|
|
/* Update states */
|
|
SS_Diff_Q14 = _mm256_sub_epi32(SS_xq_Q14, _mm256_set1_epi32(silk_LSHIFT(x_Q10[i], 4)));
|
|
SS_LF_AR_Q14 = _mm256_sub_epi32(SS_Diff_Q14, _mm256_broadcastsi128_si256(n_AR_Q14));
|
|
SS_sLTP_shp_Q14 = silk_mm256_sub_sat_epi32(SS_LF_AR_Q14, _mm256_broadcastsi128_si256(n_LF_Q14));
|
|
|
|
/* END Updating Delayed Decision States */
|
|
|
|
*smpl_buf_idx = (*smpl_buf_idx + DECISION_DELAY - 1) % DECISION_DELAY;
|
|
last_smple_idx = (*smpl_buf_idx + decisionDelay) % DECISION_DELAY;
|
|
psLastSample = &psDelDec->Samples[last_smple_idx];
|
|
|
|
/* Find winner */
|
|
RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_castsi256_si128(SS_RD_Q10), MaskDelDec);
|
|
Winner_selector = silk_index_to_selector(silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_castsi256_si128(SS_RD_Q10)));
|
|
|
|
/* Increase RD values of expired states */
|
|
Winner_rand_state = _mm_shuffle_epi8(psLastSample->RandState, Winner_selector);
|
|
|
|
SS_RD_Q10 = _mm256_blendv_epi8(
|
|
_mm256_add_epi32(SS_RD_Q10, _mm256_set1_epi32(silk_int32_MAX >> 4)),
|
|
SS_RD_Q10,
|
|
_mm256_broadcastsi128_si256(_mm_cmpeq_epi32(psLastSample->RandState, Winner_rand_state)));
|
|
|
|
/* find worst in first set */
|
|
RDmax_Q10 = silk_mm_mask_hmax_epi32(_mm256_extracti128_si256(SS_RD_Q10, 0), MaskDelDec);
|
|
/* find best in second set */
|
|
RDmin_Q10 = silk_mm_mask_hmin_epi32(_mm256_extracti128_si256(SS_RD_Q10, 1), MaskDelDec);
|
|
|
|
/* Replace a state if best from second set outperforms worst in first set */
|
|
tmp0 = _mm_cmplt_epi32(RDmin_Q10, RDmax_Q10);
|
|
if (!_mm_test_all_zeros(tmp0, tmp0))
|
|
{
|
|
int t;
|
|
RDmax_ind = silk_index_of_first_equal_epi32(RDmax_Q10, _mm256_extracti128_si256(SS_RD_Q10, 0));
|
|
RDmin_ind = silk_index_of_first_equal_epi32(RDmin_Q10, _mm256_extracti128_si256(SS_RD_Q10, 1));
|
|
tmp1 = _mm_cvtepi8_epi32(_mm_cvtsi32_si128(0xFFU << (unsigned)(RDmax_ind << 3)));
|
|
tmp0 = _mm_blendv_epi8(
|
|
_mm_set_epi8(0xF, 0xE, 0xD, 0xC, 0xB, 0xA, 0x9, 0x8, 0x7, 0x6, 0x5, 0x4, 0x3, 0x2, 0x1, 0x0),
|
|
silk_index_to_selector(RDmin_ind),
|
|
tmp1);
|
|
for (t = i; t < MAX_SUB_FRAME_LENGTH + NSQ_LPC_BUF_LENGTH; t++)
|
|
{
|
|
psDelDec->sLPC_Q14[t] = _mm_shuffle_epi8(psDelDec->sLPC_Q14[t], tmp0);
|
|
}
|
|
psDelDec->Seed = _mm_shuffle_epi8(psDelDec->Seed, tmp0);
|
|
psDelDec->SeedInit = _mm_shuffle_epi8(psDelDec->SeedInit, tmp0);
|
|
for (t = 0; t < MAX_SHAPE_LPC_ORDER; t++)
|
|
{
|
|
psDelDec->sAR2_Q14[t] = _mm_shuffle_epi8(psDelDec->sAR2_Q14[t], tmp0);
|
|
}
|
|
for (t = 0; t < DECISION_DELAY; t++)
|
|
{
|
|
psDelDec->Samples[t].RandState = _mm_shuffle_epi8(psDelDec->Samples[t].RandState, tmp0);
|
|
psDelDec->Samples[t].Q_Q10 = _mm_shuffle_epi8(psDelDec->Samples[t].Q_Q10, tmp0);
|
|
psDelDec->Samples[t].Xq_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Xq_Q14, tmp0);
|
|
psDelDec->Samples[t].Pred_Q15 = _mm_shuffle_epi8(psDelDec->Samples[t].Pred_Q15, tmp0);
|
|
psDelDec->Samples[t].Shape_Q14 = _mm_shuffle_epi8(psDelDec->Samples[t].Shape_Q14, tmp0);
|
|
}
|
|
mask = _mm256_castsi128_si256(_mm_blendv_epi8(_mm_set_epi32(0x3, 0x2, 0x1, 0x0), _mm_set1_epi32(RDmin_ind + 4), tmp1));
|
|
SS_Q_Q10 = _mm256_permutevar8x32_epi32(SS_Q_Q10, mask);
|
|
SS_RD_Q10 = _mm256_permutevar8x32_epi32(SS_RD_Q10, mask);
|
|
SS_xq_Q14 = _mm256_permutevar8x32_epi32(SS_xq_Q14, mask);
|
|
SS_LF_AR_Q14 = _mm256_permutevar8x32_epi32(SS_LF_AR_Q14, mask);
|
|
SS_Diff_Q14 = _mm256_permutevar8x32_epi32(SS_Diff_Q14, mask);
|
|
SS_sLTP_shp_Q14 = _mm256_permutevar8x32_epi32(SS_sLTP_shp_Q14, mask);
|
|
SS_LPC_exc_Q14 = _mm256_permutevar8x32_epi32(SS_LPC_exc_Q14, mask);
|
|
}
|
|
|
|
/* Write samples from winner to output and long-term filter states */
|
|
if (subfr > 0 || i >= decisionDelay)
|
|
{
|
|
pulses[i - decisionDelay] =
|
|
(opus_int8)silk_sar_round_32(silk_select_winner(psLastSample->Q_Q10, Winner_selector), 10);
|
|
xq[i - decisionDelay] =
|
|
silk_sat16((opus_int32)silk_sar_round_smulww(silk_select_winner(psLastSample->Xq_Q14, Winner_selector), delayedGain_Q10[last_smple_idx], 8));
|
|
NSQ->sLTP_shp_Q14[NSQ->sLTP_shp_buf_idx - decisionDelay] =
|
|
silk_select_winner(psLastSample->Shape_Q14, Winner_selector);
|
|
sLTP_Q15[NSQ->sLTP_buf_idx - decisionDelay] =
|
|
silk_select_winner(psLastSample->Pred_Q15, Winner_selector);
|
|
}
|
|
NSQ->sLTP_shp_buf_idx++;
|
|
NSQ->sLTP_buf_idx++;
|
|
|
|
/* Update states */
|
|
psSample = &psDelDec->Samples[*smpl_buf_idx];
|
|
psDelDec->Seed = _mm_add_epi32(psDelDec->Seed, silk_mm_srai_round_epi32(_mm256_castsi256_si128(SS_Q_Q10), 10));
|
|
psDelDec->LF_AR_Q14 = _mm256_castsi256_si128(SS_LF_AR_Q14);
|
|
psDelDec->Diff_Q14 = _mm256_castsi256_si128(SS_Diff_Q14);
|
|
psDelDec->sLPC_Q14[i + NSQ_LPC_BUF_LENGTH] = _mm256_castsi256_si128(SS_xq_Q14);
|
|
psDelDec->RD_Q10 = _mm256_castsi256_si128(SS_RD_Q10);
|
|
psSample->Xq_Q14 = _mm256_castsi256_si128(SS_xq_Q14);
|
|
psSample->Q_Q10 = _mm256_castsi256_si128(SS_Q_Q10);
|
|
psSample->Pred_Q15 = _mm256_castsi256_si128(SS_LPC_exc_Q14);
|
|
psSample->Shape_Q14 = _mm256_castsi256_si128(SS_sLTP_shp_Q14);
|
|
psSample->RandState = psDelDec->Seed;
|
|
delayedGain_Q10[*smpl_buf_idx] = Gain_Q10;
|
|
}
|
|
/* Update LPC states */
|
|
for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
|
|
{
|
|
psDelDec->sLPC_Q14[i] = (&psDelDec->sLPC_Q14[length])[i];
|
|
}
|
|
}
|
|
|
|
static OPUS_INLINE void silk_nsq_del_dec_scale_states_avx2(
|
|
const silk_encoder_state *psEncC, /* I Encoder State */
|
|
silk_nsq_state *NSQ, /* I/O NSQ state */
|
|
NSQ_del_dec_struct *psDelDec, /* I/O Delayed decision states */
|
|
const opus_int16 x16[], /* I Input */
|
|
opus_int32 x_sc_Q10[MAX_SUB_FRAME_LENGTH], /* O Input scaled with 1/Gain in Q10 */
|
|
const opus_int16 sLTP[], /* I Re-whitened LTP state in Q0 */
|
|
opus_int32 sLTP_Q15[], /* O LTP state matching scaled input */
|
|
opus_int subfr, /* I Subframe number */
|
|
const opus_int LTP_scale_Q14, /* I LTP state scaling */
|
|
const opus_int32 Gains_Q16[MAX_NB_SUBFR], /* I */
|
|
const opus_int pitchL[MAX_NB_SUBFR], /* I Pitch lag */
|
|
const opus_int signal_type, /* I Signal type */
|
|
const opus_int decisionDelay /* I Decision delay */
|
|
)
|
|
{
|
|
int i;
|
|
opus_int lag;
|
|
opus_int32 gain_adj_Q16, inv_gain_Q31, inv_gain_Q26;
|
|
NSQ_del_dec_sample_struct *psSample;
|
|
|
|
lag = pitchL[subfr];
|
|
inv_gain_Q31 = silk_INVERSE32_varQ(silk_max(Gains_Q16[subfr], 1), 47);
|
|
silk_assert(inv_gain_Q31 != 0);
|
|
|
|
/* Scale input */
|
|
inv_gain_Q26 = silk_sar_round_32(inv_gain_Q31, 5);
|
|
for (i = 0; i < psEncC->subfr_length; i+=4)
|
|
{
|
|
__m256i x = _mm256_cvtepi16_epi64(_mm_loadu_si64(&x16[i]));
|
|
x = _mm256_slli_epi64(_mm256_mul_epi32(x, _mm256_set1_epi32(inv_gain_Q26)), 16);
|
|
_mm_storeu_si128((__m128i*)&x_sc_Q10[i], silk_cvtepi64_epi32_high(x));
|
|
}
|
|
|
|
/* After rewhitening the LTP state is un-scaled, so scale with inv_gain_Q16 */
|
|
if (NSQ->rewhite_flag)
|
|
{
|
|
if (subfr == 0)
|
|
{
|
|
/* Do LTP downscaling */
|
|
inv_gain_Q31 = silk_LSHIFT(silk_SMULWB(inv_gain_Q31, LTP_scale_Q14), 2);
|
|
}
|
|
for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx; i++)
|
|
{
|
|
silk_assert(i < MAX_FRAME_LENGTH);
|
|
sLTP_Q15[i] = silk_SMULWB(inv_gain_Q31, sLTP[i]);
|
|
}
|
|
}
|
|
|
|
/* Adjust for changing gain */
|
|
if (Gains_Q16[subfr] != NSQ->prev_gain_Q16)
|
|
{
|
|
gain_adj_Q16 = silk_DIV32_varQ(NSQ->prev_gain_Q16, Gains_Q16[subfr], 16);
|
|
|
|
/* Scale long-term shaping state */
|
|
for (i = NSQ->sLTP_shp_buf_idx - psEncC->ltp_mem_length; i < NSQ->sLTP_shp_buf_idx; i+=4)
|
|
{
|
|
opus_int32 *p = &NSQ->sLTP_shp_Q14[i];
|
|
_mm_storeu_si128((__m128i*)p, silk_mm_smulww_epi32(_mm_loadu_si128((__m128i*)p), gain_adj_Q16));
|
|
}
|
|
|
|
/* Scale long-term prediction state */
|
|
if (signal_type == TYPE_VOICED && NSQ->rewhite_flag == 0)
|
|
{
|
|
for (i = NSQ->sLTP_buf_idx - lag - LTP_ORDER / 2; i < NSQ->sLTP_buf_idx - decisionDelay; i++)
|
|
{
|
|
sLTP_Q15[i] = ((opus_int64)sLTP_Q15[i]) * ((opus_int64)gain_adj_Q16) >> 16;
|
|
}
|
|
}
|
|
|
|
/* Scale scalar states */
|
|
psDelDec->LF_AR_Q14 = silk_mm_smulww_epi32(psDelDec->LF_AR_Q14, gain_adj_Q16);
|
|
psDelDec->Diff_Q14 = silk_mm_smulww_epi32(psDelDec->Diff_Q14, gain_adj_Q16);
|
|
|
|
/* Scale short-term prediction and shaping states */
|
|
for (i = 0; i < NSQ_LPC_BUF_LENGTH; i++)
|
|
{
|
|
psDelDec->sLPC_Q14[i] = silk_mm_smulww_epi32(psDelDec->sLPC_Q14[i], gain_adj_Q16);
|
|
}
|
|
for (i = 0; i < DECISION_DELAY; i++)
|
|
{
|
|
psSample = &psDelDec->Samples[i];
|
|
psSample->Pred_Q15 = silk_mm_smulww_epi32(psSample->Pred_Q15, gain_adj_Q16);
|
|
psSample->Shape_Q14 = silk_mm_smulww_epi32(psSample->Shape_Q14, gain_adj_Q16);
|
|
}
|
|
for (i = 0; i < MAX_SHAPE_LPC_ORDER; i++)
|
|
{
|
|
psDelDec->sAR2_Q14[i] = silk_mm_smulww_epi32(psDelDec->sAR2_Q14[i], gain_adj_Q16);
|
|
}
|
|
|
|
/* Save inverse gain */
|
|
NSQ->prev_gain_Q16 = Gains_Q16[subfr];
|
|
}
|
|
}
|
|
|
|
static OPUS_INLINE void silk_LPC_analysis_filter_avx2(
|
|
opus_int16 *out, /* O Output signal */
|
|
const opus_int16 *in, /* I Input signal */
|
|
const opus_int16 *B, /* I MA prediction coefficients, Q12 [order] */
|
|
const opus_int32 len, /* I Signal length */
|
|
const opus_int32 order /* I Filter order */
|
|
)
|
|
{
|
|
int i;
|
|
opus_int32 out32_Q12, out32;
|
|
silk_assert(order == 10 || order == 16);
|
|
|
|
for(i = order; i < len; i++ )
|
|
{
|
|
const opus_int16 *in_ptr = &in[ i ];
|
|
/* Allowing wrap around so that two wraps can cancel each other. The rare
|
|
cases where the result wraps around can only be triggered by invalid streams*/
|
|
|
|
__m256i in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-8]));
|
|
__m256i B_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)& B[0]));
|
|
__m256i sum = _mm256_mullo_epi32(in_v, silk_mm256_reverse_epi32(B_v));
|
|
if (order > 10)
|
|
{
|
|
in_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&in_ptr[-16]));
|
|
B_v = _mm256_cvtepi16_epi32(_mm_loadu_si128((__m128i*)&B [8]));
|
|
B_v = silk_mm256_reverse_epi32(B_v);
|
|
}
|
|
else
|
|
{
|
|
in_v = _mm256_cvtepi16_epi32(_mm_loadu_si32(&in_ptr[-10]));
|
|
B_v = _mm256_cvtepi16_epi32(_mm_loadu_si32(&B [8]));
|
|
B_v = _mm256_shuffle_epi32(B_v, 0x01);
|
|
}
|
|
sum = _mm256_add_epi32(sum, _mm256_mullo_epi32(in_v, B_v));
|
|
|
|
out32_Q12 = silk_mm256_hsum_epi32(sum);
|
|
|
|
/* Subtract prediction */
|
|
out32_Q12 = silk_SUB32_ovflw( silk_LSHIFT( (opus_int32)*in_ptr, 12 ), out32_Q12 );
|
|
|
|
/* Scale to Q0 */
|
|
out32 = silk_sar_round_32(out32_Q12, 12);
|
|
|
|
/* Saturate output */
|
|
out[ i ] = silk_sat16(out32);
|
|
}
|
|
|
|
/* Set first d output samples to zero */
|
|
silk_memset( out, 0, order * sizeof( opus_int16 ) );
|
|
}
|