mirror of
https://github.com/xiph/opus.git
synced 2025-05-16 16:38:30 +00:00

According to David Rowe, when rand() returns RAND_MAX (which is likely for 16-bit output), we end up producing a click.
401 lines
11 KiB
C
401 lines
11 KiB
C
/* Copyright (c) 2018 Mozilla
|
|
2008-2011 Octasic Inc.
|
|
2012-2017 Jean-Marc Valin */
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include "opus_types.h"
|
|
#include "arch.h"
|
|
#include "common.h"
|
|
#include "tansig_table.h"
|
|
#include "nnet.h"
|
|
#include "nnet_data.h"
|
|
|
|
#define SOFTMAX_HACK
|
|
|
|
#ifdef __AVX__
|
|
#include "vec_avx.h"
|
|
#elif __ARM_NEON__
|
|
#include "vec_neon.h"
|
|
#else
|
|
#warning Compiling without any vectorization. This code will be very slow
|
|
#include "vec.h"
|
|
#endif
|
|
|
|
static OPUS_INLINE float relu(float x)
|
|
{
|
|
return x < 0 ? 0 : x;
|
|
}
|
|
|
|
|
|
static void sgemv_accum(float *out, const float *weights, int rows, int cols, int col_stride, const float *x)
|
|
{
|
|
int i, j;
|
|
if (rows % 16 == 0)
|
|
{
|
|
sgemv_accum16(out, weights, rows, cols, col_stride, x);
|
|
} else {
|
|
for (i=0;i<rows;i++)
|
|
{
|
|
for (j=0;j<cols;j++)
|
|
out[i] += weights[j*col_stride + i]*x[j];
|
|
}
|
|
}
|
|
}
|
|
|
|
void compute_activation(float *output, float *input, int N, int activation)
|
|
{
|
|
int i;
|
|
if (activation == ACTIVATION_SIGMOID) {
|
|
vec_sigmoid(output, input, N);
|
|
} else if (activation == ACTIVATION_TANH) {
|
|
vec_tanh(output, input, N);
|
|
} else if (activation == ACTIVATION_RELU) {
|
|
for (i=0;i<N;i++)
|
|
output[i] = relu(input[i]);
|
|
} else if (activation == ACTIVATION_SOFTMAX) {
|
|
#ifdef SOFTMAX_HACK
|
|
for (i=0;i<N;i++)
|
|
output[i] = input[i];
|
|
#else
|
|
float sum = 0;
|
|
softmax(output, input, N);
|
|
for (i=0;i<N;i++) {
|
|
sum += output[i];
|
|
}
|
|
sum = 1.f/(sum+1e-30);
|
|
for (i=0;i<N;i++)
|
|
output[i] = sum*output[i];
|
|
#endif
|
|
} else {
|
|
celt_assert(activation == ACTIVATION_LINEAR);
|
|
for (i=0;i<N;i++)
|
|
output[i] = input[i];
|
|
}
|
|
}
|
|
|
|
void compute_dense(const DenseLayer *layer, float *output, const float *input)
|
|
{
|
|
int i;
|
|
int N, M;
|
|
int stride;
|
|
M = layer->nb_inputs;
|
|
N = layer->nb_neurons;
|
|
stride = N;
|
|
celt_assert(input != output);
|
|
for (i=0;i<N;i++)
|
|
output[i] = layer->bias[i];
|
|
sgemv_accum(output, layer->input_weights, N, M, stride, input);
|
|
compute_activation(output, output, N, layer->activation);
|
|
}
|
|
|
|
void compute_mdense(const MDenseLayer *layer, float *output, const float *input)
|
|
{
|
|
int i, c;
|
|
int N, M, C;
|
|
int stride;
|
|
float tmp[MAX_MDENSE_TMP];
|
|
celt_assert(input != output);
|
|
M = layer->nb_inputs;
|
|
N = layer->nb_neurons;
|
|
C = layer->nb_channels;
|
|
celt_assert(N*C <= MAX_MDENSE_TMP);
|
|
stride = N*C;
|
|
for (i=0;i<N*C;i++)
|
|
tmp[i] = layer->bias[i];
|
|
sgemv_accum(tmp, layer->input_weights, N*C, M, stride, input);
|
|
compute_activation(tmp, tmp, N*C, ACTIVATION_TANH);
|
|
for (i=0;i<N;i++)
|
|
output[i] = 0;
|
|
for (c=0;c<C;c++)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
output[i] += tmp[c*N + i]*layer->factor[c*N + i];
|
|
}
|
|
compute_activation(output, output, N, layer->activation);
|
|
}
|
|
|
|
void compute_gru(const GRULayer *gru, float *state, const float *input)
|
|
{
|
|
int i;
|
|
int N, M;
|
|
int stride;
|
|
float tmp[MAX_RNN_NEURONS];
|
|
float z[MAX_RNN_NEURONS];
|
|
float r[MAX_RNN_NEURONS];
|
|
float h[MAX_RNN_NEURONS];
|
|
celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
|
|
celt_assert(input != state);
|
|
M = gru->nb_inputs;
|
|
N = gru->nb_neurons;
|
|
stride = 3*N;
|
|
/* Compute update gate. */
|
|
for (i=0;i<N;i++)
|
|
z[i] = gru->bias[i];
|
|
if (gru->reset_after)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
z[i] += gru->bias[3*N + i];
|
|
}
|
|
sgemv_accum(z, gru->input_weights, N, M, stride, input);
|
|
sgemv_accum(z, gru->recurrent_weights, N, N, stride, state);
|
|
compute_activation(z, z, N, ACTIVATION_SIGMOID);
|
|
|
|
/* Compute reset gate. */
|
|
for (i=0;i<N;i++)
|
|
r[i] = gru->bias[N + i];
|
|
if (gru->reset_after)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
r[i] += gru->bias[4*N + i];
|
|
}
|
|
sgemv_accum(r, &gru->input_weights[N], N, M, stride, input);
|
|
sgemv_accum(r, &gru->recurrent_weights[N], N, N, stride, state);
|
|
compute_activation(r, r, N, ACTIVATION_SIGMOID);
|
|
|
|
/* Compute output. */
|
|
for (i=0;i<N;i++)
|
|
h[i] = gru->bias[2*N + i];
|
|
if (gru->reset_after)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
tmp[i] = gru->bias[5*N + i];
|
|
sgemv_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state);
|
|
for (i=0;i<N;i++)
|
|
h[i] += tmp[i] * r[i];
|
|
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
|
} else {
|
|
for (i=0;i<N;i++)
|
|
tmp[i] = state[i] * r[i];
|
|
sgemv_accum(h, &gru->input_weights[2*N], N, M, stride, input);
|
|
sgemv_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp);
|
|
}
|
|
compute_activation(h, h, N, gru->activation);
|
|
for (i=0;i<N;i++)
|
|
h[i] = z[i]*state[i] + (1-z[i])*h[i];
|
|
for (i=0;i<N;i++)
|
|
state[i] = h[i];
|
|
}
|
|
|
|
void compute_gru2(const GRULayer *gru, float *state, const float *input)
|
|
{
|
|
int i;
|
|
int N, M;
|
|
int stride;
|
|
float zrh[3*MAX_RNN_NEURONS];
|
|
float recur[3*MAX_RNN_NEURONS];
|
|
float *z;
|
|
float *r;
|
|
float *h;
|
|
M = gru->nb_inputs;
|
|
N = gru->nb_neurons;
|
|
z = zrh;
|
|
r = &zrh[N];
|
|
h = &zrh[2*N];
|
|
celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
|
|
celt_assert(input != state);
|
|
celt_assert(gru->reset_after);
|
|
stride = 3*N;
|
|
/* Compute update gate. */
|
|
for (i=0;i<3*N;i++)
|
|
zrh[i] = gru->bias[i];
|
|
sgemv_accum(zrh, gru->input_weights, 3*N, M, stride, input);
|
|
for (i=0;i<3*N;i++)
|
|
recur[i] = gru->bias[3*N + i];
|
|
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
|
for (i=0;i<2*N;i++)
|
|
zrh[i] += recur[i];
|
|
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
|
for (i=0;i<N;i++)
|
|
h[i] += recur[2*N+i]*r[i];
|
|
compute_activation(h, h, N, gru->activation);
|
|
for (i=0;i<N;i++)
|
|
h[i] = z[i]*state[i] + (1-z[i])*h[i];
|
|
for (i=0;i<N;i++)
|
|
state[i] = h[i];
|
|
}
|
|
|
|
void compute_gru3(const GRULayer *gru, float *state, const float *input)
|
|
{
|
|
int i;
|
|
int N;
|
|
int stride;
|
|
float zrh[3*MAX_RNN_NEURONS];
|
|
float recur[3*MAX_RNN_NEURONS];
|
|
float *z;
|
|
float *r;
|
|
float *h;
|
|
N = gru->nb_neurons;
|
|
z = zrh;
|
|
r = &zrh[N];
|
|
h = &zrh[2*N];
|
|
celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
|
|
celt_assert(input != state);
|
|
celt_assert(gru->reset_after);
|
|
stride = 3*N;
|
|
RNN_COPY(zrh, input, 3*N);
|
|
for (i=0;i<3*N;i++)
|
|
recur[i] = gru->bias[3*N + i];
|
|
sgemv_accum(recur, gru->recurrent_weights, 3*N, N, stride, state);
|
|
for (i=0;i<2*N;i++)
|
|
zrh[i] += recur[i];
|
|
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
|
for (i=0;i<N;i++)
|
|
h[i] += recur[2*N+i]*r[i];
|
|
compute_activation(h, h, N, gru->activation);
|
|
for (i=0;i<N;i++)
|
|
h[i] = z[i]*state[i] + (1-z[i])*h[i];
|
|
for (i=0;i<N;i++)
|
|
state[i] = h[i];
|
|
}
|
|
|
|
void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input)
|
|
{
|
|
int i, k;
|
|
int N;
|
|
float zrh[3*MAX_RNN_NEURONS];
|
|
float recur[3*MAX_RNN_NEURONS];
|
|
float *z;
|
|
float *r;
|
|
float *h;
|
|
N = gru->nb_neurons;
|
|
z = zrh;
|
|
r = &zrh[N];
|
|
h = &zrh[2*N];
|
|
celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS);
|
|
celt_assert(input != state);
|
|
celt_assert(gru->reset_after);
|
|
RNN_COPY(zrh, input, 3*N);
|
|
for (i=0;i<3*N;i++)
|
|
recur[i] = gru->bias[3*N + i];
|
|
for (k=0;k<3;k++)
|
|
{
|
|
for (i=0;i<N;i++)
|
|
recur[k*N + i] += gru->diag_weights[k*N + i]*state[i];
|
|
}
|
|
sparse_sgemv_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state);
|
|
for (i=0;i<2*N;i++)
|
|
zrh[i] += recur[i];
|
|
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID);
|
|
for (i=0;i<N;i++)
|
|
h[i] += recur[2*N+i]*r[i];
|
|
compute_activation(h, h, N, gru->activation);
|
|
for (i=0;i<N;i++)
|
|
h[i] = z[i]*state[i] + (1-z[i])*h[i];
|
|
for (i=0;i<N;i++)
|
|
state[i] = h[i];
|
|
}
|
|
|
|
void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input)
|
|
{
|
|
int i;
|
|
int N, M;
|
|
int stride;
|
|
float tmp[MAX_CONV_INPUTS];
|
|
celt_assert(input != output);
|
|
celt_assert(layer->nb_inputs*layer->kernel_size <= MAX_CONV_INPUTS);
|
|
RNN_COPY(tmp, mem, layer->nb_inputs*(layer->kernel_size-1));
|
|
RNN_COPY(&tmp[layer->nb_inputs*(layer->kernel_size-1)], input, layer->nb_inputs);
|
|
M = layer->nb_inputs*layer->kernel_size;
|
|
N = layer->nb_neurons;
|
|
stride = N;
|
|
for (i=0;i<N;i++)
|
|
output[i] = layer->bias[i];
|
|
sgemv_accum(output, layer->input_weights, N, M, stride, tmp);
|
|
compute_activation(output, output, N, layer->activation);
|
|
RNN_COPY(mem, &tmp[layer->nb_inputs], layer->nb_inputs*(layer->kernel_size-1));
|
|
}
|
|
|
|
void compute_embedding(const EmbeddingLayer *layer, float *output, int input)
|
|
{
|
|
int i;
|
|
celt_assert(input >= 0);
|
|
celt_assert(input < layer->nb_inputs);
|
|
/*if (layer->dim == 64) printf("%d\n", input);*/
|
|
for (i=0;i<layer->dim;i++)
|
|
{
|
|
output[i] = layer->embedding_weights[input*layer->dim + i];
|
|
}
|
|
}
|
|
|
|
void accum_embedding(const EmbeddingLayer *layer, float *output, int input)
|
|
{
|
|
int i;
|
|
celt_assert(input >= 0);
|
|
celt_assert(input < layer->nb_inputs);
|
|
/*if (layer->dim == 64) printf("%d\n", input);*/
|
|
for (i=0;i<layer->dim;i++)
|
|
{
|
|
output[i] += layer->embedding_weights[input*layer->dim + i];
|
|
}
|
|
}
|
|
|
|
int sample_from_pdf(const float *pdf, int N, float exp_boost, float pdf_floor)
|
|
{
|
|
int i;
|
|
float sum, norm;
|
|
float r;
|
|
float tmp[DUAL_FC_OUT_SIZE];
|
|
celt_assert(N <= DUAL_FC_OUT_SIZE);
|
|
sum = 0;
|
|
#ifdef SOFTMAX_HACK
|
|
for (i=0;i<N;i++)
|
|
{
|
|
tmp[i] = pdf[i] * (1.f+exp_boost);
|
|
}
|
|
softmax(tmp, tmp, N);
|
|
for (i=0;i<N;i++)
|
|
{
|
|
sum += tmp[i];
|
|
}
|
|
#else
|
|
/* Decrease the temperature of the sampling. */
|
|
for (i=0;i<N;i++)
|
|
{
|
|
tmp[i] = pow(pdf[i], 1.f+exp_boost);
|
|
sum += tmp[i];
|
|
}
|
|
#endif
|
|
norm = 1.f/sum;
|
|
/* Convert tmp to a CDF while subtracting the floor */
|
|
tmp[0] = MAX16(0, norm*tmp[0] - pdf_floor);
|
|
for (i=1;i<N;i++)
|
|
{
|
|
tmp[i] = tmp[i-1] + MAX16(0, norm*tmp[i] - pdf_floor);
|
|
}
|
|
/* Do the sampling (from the cdf). */
|
|
r = tmp[N-1] * ((rand()+.5f)/(RAND_MAX+1.f));
|
|
for (i=0;i<N-1;i++)
|
|
{
|
|
if (r <= tmp[i]) return i;
|
|
}
|
|
return N-1;
|
|
}
|