opus/dnn/torch/plc/plc_dataset.py
2024-01-21 02:11:50 -05:00

60 lines
2.9 KiB
Python

import torch
import numpy as np
class PLCDataset(torch.utils.data.Dataset):
def __init__(self,
feature_file,
loss_file,
sequence_length=1000,
nb_features=20,
nb_burg_features=36,
lpc_order=16):
self.features_in = nb_features + nb_burg_features
self.nb_burg_features = nb_burg_features
total_features = self.features_in + lpc_order
self.sequence_length = sequence_length
self.nb_features = nb_features
self.features = np.memmap(feature_file, dtype='float32', mode='r')
self.lost = np.memmap(loss_file, dtype='int8', mode='r')
self.lost = self.lost.astype('float32')
self.nb_sequences = self.features.shape[0]//self.sequence_length//total_features
self.features = self.features[:self.nb_sequences*self.sequence_length*total_features]
self.features = self.features.reshape((self.nb_sequences, self.sequence_length, total_features))
self.features = self.features[:,:,:self.features_in]
#self.lost = self.lost[:(len(self.lost)//features.shape[1]-1)*features.shape[1]]
#self.lost = self.lost.reshape((-1, self.sequence_length))
def __len__(self):
return self.nb_sequences
def __getitem__(self, index):
features = self.features[index, :, :]
burg_lost = (np.random.rand(features.shape[0]) > .1).astype('float32')
burg_lost = np.reshape(burg_lost, (features.shape[0], 1))
burg_mask = np.tile(burg_lost, (1,self.nb_burg_features))
lost_offset = np.random.randint(0, high=self.lost.shape[0]-self.sequence_length)
lost = self.lost[lost_offset:lost_offset+self.sequence_length]
#randomly add a few 10-ms losses so that the model learns to handle them
lost = lost * (np.random.rand(lost.shape[-1]) > .02).astype('float32')
#randomly break long consecutive losses so we don't try too hard to predict them
lost = 1 - ((1-lost) * (np.random.rand(lost.shape[-1]) > .1).astype('float32'))
lost = np.reshape(lost, (features.shape[0], 1))
lost_mask = np.tile(lost, (1,features.shape[-1]))
in_features = features*lost_mask
in_features[:,:self.nb_burg_features] = in_features[:,:self.nb_burg_features]*burg_mask
#For the first frame after a loss, we don't have valid features, but the Burg estimate is valid.
#in_features[:,1:,self.nb_burg_features:] = in_features[:,1:,self.nb_burg_features:]*lost_mask[:,:-1,self.nb_burg_features:]
out_lost = np.copy(lost)
#out_lost[:,1:,:] = out_lost[:,1:,:]*out_lost[:,:-1,:]
out_features = np.concatenate([features[:,self.nb_burg_features:], 1.-out_lost], axis=-1)
burg_sign = 2*burg_lost - 1
# last dim is 1 for received packet, 0 for lost packet, and -1 when just the Burg info is missing
return in_features*lost_mask, lost*burg_sign, out_features