mirror of
https://github.com/xiph/opus.git
synced 2025-05-15 07:58:29 +00:00
79 lines
2.4 KiB
C
79 lines
2.4 KiB
C
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <math.h>
|
|
#include "pitchdnn.h"
|
|
#include "os_support.h"
|
|
#include "nnet.h"
|
|
#include "lpcnet_private.h"
|
|
|
|
|
|
float compute_pitchdnn(
|
|
PitchDNNState *st,
|
|
const float *if_features,
|
|
const float *xcorr_features,
|
|
int arch
|
|
)
|
|
{
|
|
float if1_out[DENSE_IF_UPSAMPLER_1_OUT_SIZE];
|
|
float downsampler_in[NB_XCORR_FEATURES + DENSE_IF_UPSAMPLER_2_OUT_SIZE];
|
|
float downsampler_out[DENSE_DOWNSAMPLER_OUT_SIZE];
|
|
float conv1_tmp1[(NB_XCORR_FEATURES + 2)*8] = {0};
|
|
float conv1_tmp2[(NB_XCORR_FEATURES + 2)*8] = {0};
|
|
float output[DENSE_FINAL_UPSAMPLER_OUT_SIZE];
|
|
int i;
|
|
int pos=0;
|
|
float maxval=-1;
|
|
float sum=0;
|
|
float count=0;
|
|
PitchDNN *model = &st->model;
|
|
/* IF */
|
|
compute_generic_dense(&model->dense_if_upsampler_1, if1_out, if_features, ACTIVATION_TANH, arch);
|
|
compute_generic_dense(&model->dense_if_upsampler_2, &downsampler_in[NB_XCORR_FEATURES], if1_out, ACTIVATION_TANH, arch);
|
|
/* xcorr*/
|
|
OPUS_COPY(&conv1_tmp1[1], xcorr_features, NB_XCORR_FEATURES);
|
|
compute_conv2d(&model->conv2d_1, &conv1_tmp2[1], st->xcorr_mem1, conv1_tmp1, NB_XCORR_FEATURES, NB_XCORR_FEATURES+2, ACTIVATION_TANH, arch);
|
|
compute_conv2d(&model->conv2d_2, downsampler_in, st->xcorr_mem2, conv1_tmp2, NB_XCORR_FEATURES, NB_XCORR_FEATURES, ACTIVATION_TANH, arch);
|
|
|
|
compute_generic_dense(&model->dense_downsampler, downsampler_out, downsampler_in, ACTIVATION_TANH, arch);
|
|
compute_generic_gru(&model->gru_1_input, &model->gru_1_recurrent, st->gru_state, downsampler_out, arch);
|
|
compute_generic_dense(&model->dense_final_upsampler, output, st->gru_state, ACTIVATION_LINEAR, arch);
|
|
for (i=0;i<180;i++) {
|
|
if (output[i] > maxval) {
|
|
pos = i;
|
|
maxval = output[i];
|
|
}
|
|
}
|
|
for (i=IMAX(0, pos-2); i<=IMIN(179, pos+2); i++) {
|
|
float p = exp(output[i]);
|
|
sum += p*i;
|
|
count += p;
|
|
}
|
|
/*printf("%d %f\n", pos, sum/count);*/
|
|
return (1.f/60.f)*(sum/count) - 1.5;
|
|
/*return 256.f/pow(2.f, (1.f/60.f)*i);*/
|
|
}
|
|
|
|
|
|
void pitchdnn_init(PitchDNNState *st)
|
|
{
|
|
int ret;
|
|
OPUS_CLEAR(st, 1);
|
|
#ifndef USE_WEIGHTS_FILE
|
|
ret = init_pitchdnn(&st->model, pitchdnn_arrays);
|
|
#else
|
|
ret = 0;
|
|
#endif
|
|
celt_assert(ret == 0);
|
|
}
|
|
|
|
int pitchdnn_load_model(PitchDNNState *st, const void *data, int len) {
|
|
WeightArray *list;
|
|
int ret;
|
|
parse_weights(&list, data, len);
|
|
ret = init_pitchdnn(&st->model, list);
|
|
opus_free(list);
|
|
if (ret == 0) return 0;
|
|
else return -1;
|
|
}
|