opus/dnn/torch/plc/plc.py
Jean-Marc Valin 26ddfd7135
PyTorch code for training the PLC model
Should match the TF2 code, but mostly untested
2024-01-15 18:11:47 -05:00

144 lines
4.8 KiB
Python

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm
import math
fid_dict = {}
def dump_signal(x, filename):
return
if filename in fid_dict:
fid = fid_dict[filename]
else:
fid = open(filename, "w")
fid_dict[filename] = fid
x = x.detach().numpy().astype('float32')
x.tofile(fid)
class IDCT(nn.Module):
def __init__(self, N, device=None):
super(IDCT, self).__init__()
self.N = N
n = torch.arange(N, device=device)
k = torch.arange(N, device=device)
self.table = torch.cos(torch.pi/N * (n[:,None]+.5) * k[None,:])
self.table[:,0] = self.table[:,0] * math.sqrt(.5)
self.table = self.table / math.sqrt(N/2)
def forward(self, x):
return F.linear(x, self.table, None)
def plc_loss(N, device=None, alpha=1.0, bias=1.):
idct = IDCT(18, device=device)
def loss(y_true,y_pred):
mask = y_true[:,:,-1:]
y_true = y_true[:,:,:-1]
e = (y_pred - y_true)*mask
e_bands = idct(e[:,:,:-2])
bias_mask = torch.clamp(4*y_true[:,:,-1:], min=0., max=1.)
l1_loss = torch.mean(torch.abs(e))
ceps_loss = torch.mean(torch.abs(e[:,:,:-2]))
band_loss = torch.mean(torch.abs(e_bands))
biased_loss = torch.mean(bias_mask*torch.clamp(e_bands, min=0.))
pitch_loss1 = torch.mean(torch.clamp(torch.abs(e[:,:,18:19]),max=1.))
pitch_loss = torch.mean(torch.clamp(torch.abs(e[:,:,18:19]),max=.4))
voice_bias = torch.mean(torch.clamp(-e[:,:,-1:], min=0.))
tot = l1_loss + 0.1*voice_bias + alpha*(band_loss + bias*biased_loss) + pitch_loss1 + 8*pitch_loss
return tot, l1_loss, ceps_loss, band_loss, pitch_loss
return loss
# weight initialization and clipping
def init_weights(module):
if isinstance(module, nn.GRU):
for p in module.named_parameters():
if p[0].startswith('weight_hh_'):
nn.init.orthogonal_(p[1])
class GLU(nn.Module):
def __init__(self, feat_size):
super(GLU, self).__init__()
torch.manual_seed(5)
self.gate = weight_norm(nn.Linear(feat_size, feat_size, bias=False))
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\
or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.orthogonal_(m.weight.data)
def forward(self, x):
out = x * torch.sigmoid(self.gate(x))
return out
class FWConv(nn.Module):
def __init__(self, in_size, out_size, kernel_size=2):
super(FWConv, self).__init__()
torch.manual_seed(5)
self.in_size = in_size
self.kernel_size = kernel_size
self.conv = weight_norm(nn.Linear(in_size*self.kernel_size, out_size, bias=False))
self.glu = GLU(out_size)
self.init_weights()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv1d) or isinstance(m, nn.ConvTranspose1d)\
or isinstance(m, nn.Linear) or isinstance(m, nn.Embedding):
nn.init.orthogonal_(m.weight.data)
def forward(self, x, state):
xcat = torch.cat((state, x), -1)
out = self.glu(torch.tanh(self.conv(xcat)))
return out, xcat[:,self.in_size:]
def n(x):
return torch.clamp(x + (1./127.)*(torch.rand_like(x)-.5), min=-1., max=1.)
class PLC(nn.Module):
def __init__(self, features_in=57, features_out=20, cond_size=128, gru_size=128):
super(PLC, self).__init__()
self.features_in = features_in
self.features_out = features_out
self.cond_size = cond_size
self.gru_size = gru_size
self.dense_in = nn.Linear(self.features_in, self.cond_size)
self.gru1 = nn.GRU(self.cond_size, self.gru_size, batch_first=True)
self.gru2 = nn.GRU(self.gru_size, self.gru_size, batch_first=True)
self.dense_out = nn.Linear(self.gru_size, features_out)
self.apply(init_weights)
nb_params = sum(p.numel() for p in self.parameters())
print(f"plc model: {nb_params} weights")
def forward(self, features, lost, states=None):
device = features.device
batch_size = features.size(0)
if states is None:
gru1_state = torch.zeros((1, batch_size, self.gru_size), device=device)
gru2_state = torch.zeros((1, batch_size, self.gru_size), device=device)
else:
gru1_state = states[0]
gru2_state = states[1]
x = torch.cat([features, lost], dim=-1)
x = torch.tanh(self.dense_in(x))
gru1_out, gru1_state = self.gru1(x, gru1_state)
gru2_out, gru2_state = self.gru2(gru1_out, gru2_state)
return self.dense_out(gru2_out), [gru1_state, gru2_state]