opus/dnn/torch/osce/utils/moc.py

153 lines
4.5 KiB
Python

import numpy as np
import scipy.signal
def compute_vad_mask(x, fs, stop_db=-70):
frame_length = (fs + 49) // 50
x = x[: frame_length * (len(x) // frame_length)]
frames = x.reshape(-1, frame_length)
frame_energy = np.sum(frames ** 2, axis=1)
frame_energy_smooth = np.convolve(frame_energy, np.ones(5) / 5, mode='same')
max_threshold = frame_energy.max() * 10 ** (stop_db/20)
vactive = np.ones_like(frames)
vactive[frame_energy_smooth < max_threshold, :] = 0
vactive = vactive.reshape(-1)
filter = np.sin(np.arange(frame_length) * np.pi / (frame_length - 1))
filter = filter / filter.sum()
mask = np.convolve(vactive, filter, mode='same')
return x, mask
def convert_mask(mask, num_frames, frame_size=160, hop_size=40):
num_samples = frame_size + (num_frames - 1) * hop_size
if len(mask) < num_samples:
mask = np.concatenate((mask, np.zeros(num_samples - len(mask))), dtype=mask.dtype)
else:
mask = mask[:num_samples]
new_mask = np.array([np.mean(mask[i*hop_size : i*hop_size + frame_size]) for i in range(num_frames)])
return new_mask
def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
num_spectra = (len(x) - window_size - hop_size) // hop_size
window = scipy.signal.get_window(window, window_size)
N = window_size // 2
frames = np.concatenate([x[np.newaxis, i * hop_size : i * hop_size + window_size] for i in range(num_spectra)]) * window
psd = np.abs(np.fft.fft(frames, axis=1)[:, :N + 1]) ** 2
return psd
def frequency_mask(num_bands, up_factor, down_factor):
up_mask = np.zeros((num_bands, num_bands))
down_mask = np.zeros((num_bands, num_bands))
for i in range(num_bands):
up_mask[i, : i + 1] = up_factor ** np.arange(i, -1, -1)
down_mask[i, i :] = down_factor ** np.arange(num_bands - i)
return down_mask @ up_mask
def rect_fb(band_limits, num_bins=None):
num_bands = len(band_limits) - 1
if num_bins is None:
num_bins = band_limits[-1]
fb = np.zeros((num_bands, num_bins))
for i in range(num_bands):
fb[i, band_limits[i]:band_limits[i+1]] = 1
return fb
def compare(x, y, apply_vad=False):
""" Modified version of opus_compare for 16 kHz mono signals
Args:
x (np.ndarray): reference input signal scaled to [-1, 1]
y (np.ndarray): test signal scaled to [-1, 1]
Returns:
float: perceptually weighted error
"""
# filter bank: bark scale with minimum-2-bin bands and cutoff at 7.5 kHz
band_limits = [0, 2, 4, 6, 7, 9, 11, 13, 15, 18, 22, 26, 31, 36, 43, 51, 60, 75]
num_bands = len(band_limits) - 1
fb = rect_fb(band_limits, num_bins=81)
# trim samples to same size
num_samples = min(len(x), len(y))
x = x[:num_samples] * 2**15
y = y[:num_samples] * 2**15
psd_x = power_spectrum(x) + 100000
psd_y = power_spectrum(y) + 100000
num_frames = psd_x.shape[0]
# average band energies
be_x = (psd_x @ fb.T) / np.sum(fb, axis=1)
# frequecy masking
f_mask = frequency_mask(num_bands, 0.1, 0.03)
mask_x = be_x @ f_mask.T
# temporal masking
for i in range(1, num_frames):
mask_x[i, :] += 0.5 * mask_x[i-1, :]
# apply mask
masked_psd_x = psd_x + 0.1 * (mask_x @ fb)
masked_psd_y = psd_y + 0.1 * (mask_x @ fb)
# 2-frame average
masked_psd_x = masked_psd_x[1:] + masked_psd_x[:-1]
masked_psd_y = masked_psd_y[1:] + masked_psd_y[:-1]
# distortion metric
re = masked_psd_y / masked_psd_x
im = np.log(re) ** 2
Eb = ((im @ fb.T) / np.sum(fb, axis=1))
Ef = np.mean(Eb , axis=1)
if apply_vad:
_, mask = compute_vad_mask(x, 16000)
mask = convert_mask(mask, Ef.shape[0])
else:
mask = np.ones_like(Ef)
err = np.mean(np.abs(Ef[mask > 1e-6]) ** 3) ** (1/6)
return float(err)
if __name__ == "__main__":
import argparse
from scipy.io import wavfile
parser = argparse.ArgumentParser()
parser.add_argument('ref', type=str, help='reference wav file')
parser.add_argument('deg', type=str, help='degraded wav file')
parser.add_argument('--apply-vad', action='store_true')
args = parser.parse_args()
fs1, x = wavfile.read(args.ref)
fs2, y = wavfile.read(args.deg)
if max(fs1, fs2) != 16000:
raise ValueError('error: encountered sampling frequency diffrent from 16kHz')
x = x.astype(np.float32) / 2**15
y = y.astype(np.float32) / 2**15
err = compare(x, y, apply_vad=args.apply_vad)
print(f"MOC: {err}")