opus/dnn/torch/osce/adv_train_vocoder.py
2024-01-20 14:44:22 +01:00

451 lines
15 KiB
Python

"""
/* Copyright (c) 2023 Amazon
Written by Jan Buethe */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
"""
import os
import argparse
import sys
import math as m
import random
import yaml
from tqdm import tqdm
try:
import git
has_git = True
except:
has_git = False
import torch
from torch.optim.lr_scheduler import LambdaLR
import torch.nn.functional as F
from scipy.io import wavfile
import numpy as np
import pesq
from data import LPCNetVocodingDataset
from models import model_dict
from utils.lpcnet_features import load_lpcnet_features
from utils.misc import count_parameters
from losses.stft_loss import MRSTFTLoss, MRLogMelLoss
parser = argparse.ArgumentParser()
parser.add_argument('setup', type=str, help='setup yaml file')
parser.add_argument('output', type=str, help='output path')
parser.add_argument('--device', type=str, help='compute device', default=None)
parser.add_argument('--initial-checkpoint', type=str, help='initial checkpoint', default=None)
parser.add_argument('--test-features', type=str, help='path to features for testing', default=None)
parser.add_argument('--no-redirect', action='store_true', help='disables re-direction of stdout')
args = parser.parse_args()
torch.set_num_threads(4)
with open(args.setup, 'r') as f:
setup = yaml.load(f.read(), yaml.FullLoader)
checkpoint_prefix = 'checkpoint'
output_prefix = 'output'
setup_name = 'setup.yml'
output_file='out.txt'
# check model
if not 'name' in setup['model']:
print(f'warning: did not find model entry in setup, using default PitchPostFilter')
model_name = 'pitchpostfilter'
else:
model_name = setup['model']['name']
# prepare output folder
if os.path.exists(args.output):
print("warning: output folder exists")
reply = input('continue? (y/n): ')
while reply not in {'y', 'n'}:
reply = input('continue? (y/n): ')
if reply == 'n':
os._exit()
else:
os.makedirs(args.output, exist_ok=True)
checkpoint_dir = os.path.join(args.output, 'checkpoints')
os.makedirs(checkpoint_dir, exist_ok=True)
# add repo info to setup
if has_git:
working_dir = os.path.split(__file__)[0]
try:
repo = git.Repo(working_dir, search_parent_directories=True)
setup['repo'] = dict()
hash = repo.head.object.hexsha
urls = list(repo.remote().urls)
is_dirty = repo.is_dirty()
if is_dirty:
print("warning: repo is dirty")
setup['repo']['hash'] = hash
setup['repo']['urls'] = urls
setup['repo']['dirty'] = is_dirty
except:
has_git = False
# dump setup
with open(os.path.join(args.output, setup_name), 'w') as f:
yaml.dump(setup, f)
ref = None
# prepare inference test if wanted
inference_test = False
if type(args.test_features) != type(None):
test_features = load_lpcnet_features(args.test_features)
features = test_features['features']
periods = test_features['periods']
inference_folder = os.path.join(args.output, 'inference_test')
os.makedirs(inference_folder, exist_ok=True)
inference_test = True
# training parameters
batch_size = setup['training']['batch_size']
epochs = setup['training']['epochs']
lr = setup['training']['lr']
lr_decay_factor = setup['training']['lr_decay_factor']
lr_gen = lr * setup['training']['gen_lr_reduction']
lambda_feat = setup['training']['lambda_feat']
lambda_reg = setup['training']['lambda_reg']
adv_target = setup['training'].get('adv_target', 'target')
# load training dataset
data_config = setup['data']
data = LPCNetVocodingDataset(setup['dataset'], **data_config)
# load validation dataset if given
if 'validation_dataset' in setup:
validation_data = LPCNetVocodingDataset(setup['validation_dataset'], **data_config)
validation_dataloader = torch.utils.data.DataLoader(validation_data, batch_size=batch_size, drop_last=True, num_workers=4)
run_validation = True
else:
run_validation = False
# create model
model = model_dict[model_name](*setup['model']['args'], **setup['model']['kwargs'])
# create discriminator
disc_name = setup['discriminator']['name']
disc = model_dict[disc_name](
*setup['discriminator']['args'], **setup['discriminator']['kwargs']
)
# set compute device
if type(args.device) == type(None):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
else:
device = torch.device(args.device)
# dataloader
dataloader = torch.utils.data.DataLoader(data, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=4)
# optimizer is introduced to trainable parameters
parameters = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(parameters, lr=lr_gen)
# disc optimizer
parameters = [p for p in disc.parameters() if p.requires_grad]
optimizer_disc = torch.optim.Adam(parameters, lr=lr, betas=[0.5, 0.9])
# learning rate scheduler
scheduler = LambdaLR(optimizer=optimizer, lr_lambda=lambda x : 1 / (1 + lr_decay_factor * x))
if args.initial_checkpoint is not None:
print(f"loading state dict from {args.initial_checkpoint}...")
chkpt = torch.load(args.initial_checkpoint, map_location=device)
model.load_state_dict(chkpt['state_dict'])
if 'disc_state_dict' in chkpt:
print(f"loading discriminator state dict from {args.initial_checkpoint}...")
disc.load_state_dict(chkpt['disc_state_dict'])
if 'optimizer_state_dict' in chkpt:
print(f"loading optimizer state dict from {args.initial_checkpoint}...")
optimizer.load_state_dict(chkpt['optimizer_state_dict'])
if 'disc_optimizer_state_dict' in chkpt:
print(f"loading discriminator optimizer state dict from {args.initial_checkpoint}...")
optimizer_disc.load_state_dict(chkpt['disc_optimizer_state_dict'])
if 'scheduler_state_disc' in chkpt:
print(f"loading scheduler state dict from {args.initial_checkpoint}...")
scheduler.load_state_dict(chkpt['scheduler_state_dict'])
# if 'torch_rng_state' in chkpt:
# print(f"setting torch RNG state from {args.initial_checkpoint}...")
# torch.set_rng_state(chkpt['torch_rng_state'])
if 'numpy_rng_state' in chkpt:
print(f"setting numpy RNG state from {args.initial_checkpoint}...")
np.random.set_state(chkpt['numpy_rng_state'])
if 'python_rng_state' in chkpt:
print(f"setting Python RNG state from {args.initial_checkpoint}...")
random.setstate(chkpt['python_rng_state'])
# loss
w_l1 = setup['training']['loss']['w_l1']
w_lm = setup['training']['loss']['w_lm']
w_slm = setup['training']['loss']['w_slm']
w_sc = setup['training']['loss']['w_sc']
w_logmel = setup['training']['loss']['w_logmel']
w_wsc = setup['training']['loss']['w_wsc']
w_xcorr = setup['training']['loss']['w_xcorr']
w_sxcorr = setup['training']['loss']['w_sxcorr']
w_l2 = setup['training']['loss']['w_l2']
w_sum = w_l1 + w_lm + w_sc + w_logmel + w_wsc + w_slm + w_xcorr + w_sxcorr + w_l2
stftloss = MRSTFTLoss(sc_weight=w_sc, log_mag_weight=w_lm, wsc_weight=w_wsc, smooth_log_mag_weight=w_slm, sxcorr_weight=w_sxcorr).to(device)
logmelloss = MRLogMelLoss().to(device)
def xcorr_loss(y_true, y_pred):
dims = list(range(1, len(y_true.shape)))
loss = 1 - torch.sum(y_true * y_pred, dim=dims) / torch.sqrt(torch.sum(y_true ** 2, dim=dims) * torch.sum(y_pred ** 2, dim=dims) + 1e-9)
return torch.mean(loss)
def td_l2_norm(y_true, y_pred):
dims = list(range(1, len(y_true.shape)))
loss = torch.mean((y_true - y_pred) ** 2, dim=dims) / (torch.mean(y_pred ** 2, dim=dims) ** .5 + 1e-6)
return loss.mean()
def td_l1(y_true, y_pred, pow=0):
dims = list(range(1, len(y_true.shape)))
tmp = torch.mean(torch.abs(y_true - y_pred), dim=dims) / ((torch.mean(torch.abs(y_pred), dim=dims) + 1e-9) ** pow)
return torch.mean(tmp)
def criterion(x, y):
return (w_l1 * td_l1(x, y, pow=1) + stftloss(x, y) + w_logmel * logmelloss(x, y)
+ w_xcorr * xcorr_loss(x, y) + w_l2 * td_l2_norm(x, y)) / w_sum
# model checkpoint
checkpoint = {
'setup' : setup,
'state_dict' : model.state_dict(),
'loss' : -1
}
if not args.no_redirect:
print(f"re-directing output to {os.path.join(args.output, output_file)}")
sys.stdout = open(os.path.join(args.output, output_file), "w")
print("summary:")
print(f"generator: {count_parameters(model.cpu()) / 1e6:5.3f} M parameters")
if hasattr(model, 'flop_count'):
print(f"generator: {model.flop_count(16000) / 1e6:5.3f} MFLOPS")
print(f"discriminator: {count_parameters(disc.cpu()) / 1e6:5.3f} M parameters")
if ref is not None:
noisy = np.fromfile(os.path.join(args.testdata, 'noisy.s16'), dtype=np.int16)
initial_mos = pesq.pesq(16000, ref, noisy, mode='wb')
print(f"initial MOS (PESQ): {initial_mos}")
best_loss = 1e9
log_interval = 10
m_r = 0
m_f = 0
s_r = 1
s_f = 1
def optimizer_to(optim, device):
for param in optim.state.values():
if isinstance(param, torch.Tensor):
param.data = param.data.to(device)
if param._grad is not None:
param._grad.data = param._grad.data.to(device)
elif isinstance(param, dict):
for subparam in param.values():
if isinstance(subparam, torch.Tensor):
subparam.data = subparam.data.to(device)
if subparam._grad is not None:
subparam._grad.data = subparam._grad.data.to(device)
optimizer_to(optimizer, device)
optimizer_to(optimizer_disc, device)
for ep in range(1, epochs + 1):
print(f"training epoch {ep}...")
model.to(device)
disc.to(device)
model.train()
disc.train()
running_disc_loss = 0
running_adv_loss = 0
running_feature_loss = 0
running_reg_loss = 0
with tqdm(dataloader, unit='batch', file=sys.stdout) as tepoch:
for i, batch in enumerate(tepoch):
# set gradients to zero
optimizer.zero_grad()
# push batch to device
for key in batch:
batch[key] = batch[key].to(device)
target = batch['target'].to(device)
disc_target = batch[adv_target].to(device)
# calculate model output
output = model(batch['features'], batch['periods'])
# discriminator update
scores_gen = disc(output.detach())
scores_real = disc(disc_target.unsqueeze(1))
disc_loss = 0
for scale in scores_gen:
disc_loss += ((scale[-1]) ** 2).mean()
m_f = 0.9 * m_f + 0.1 * scale[-1].detach().mean().cpu().item()
s_f = 0.9 * s_f + 0.1 * scale[-1].detach().std().cpu().item()
for scale in scores_real:
disc_loss += ((1 - scale[-1]) ** 2).mean()
m_r = 0.9 * m_r + 0.1 * scale[-1].detach().mean().cpu().item()
s_r = 0.9 * s_r + 0.1 * scale[-1].detach().std().cpu().item()
disc_loss = 0.5 * disc_loss / len(scores_gen)
winning_chance = 0.5 * m.erfc( (m_r - m_f) / m.sqrt(2 * (s_f**2 + s_r**2)) )
disc.zero_grad()
disc_loss.backward()
optimizer_disc.step()
# generator update
scores_gen = disc(output)
# calculate loss
loss_reg = criterion(output.squeeze(1), target)
num_discs = len(scores_gen)
loss_gen = 0
for scale in scores_gen:
loss_gen += ((1 - scale[-1]) ** 2).mean() / num_discs
loss_feat = 0
for k in range(num_discs):
num_layers = len(scores_gen[k]) - 1
f = 4 / num_discs / num_layers
for l in range(num_layers):
loss_feat += f * F.l1_loss(scores_gen[k][l], scores_real[k][l].detach())
model.zero_grad()
(loss_gen + lambda_feat * loss_feat + lambda_reg * loss_reg).backward()
optimizer.step()
running_adv_loss += loss_gen.detach().cpu().item()
running_disc_loss += disc_loss.detach().cpu().item()
running_feature_loss += lambda_feat * loss_feat.detach().cpu().item()
running_reg_loss += lambda_reg * loss_reg.detach().cpu().item()
# update status bar
if i % log_interval == 0:
tepoch.set_postfix(adv_loss=f"{running_adv_loss/(i + 1):8.7f}",
disc_loss=f"{running_disc_loss/(i + 1):8.7f}",
feat_loss=f"{running_feature_loss/(i + 1):8.7f}",
reg_loss=f"{running_reg_loss/(i + 1):8.7f}",
wc=f"{100*winning_chance:5.2f}%")
# save checkpoint
checkpoint['state_dict'] = model.state_dict()
checkpoint['disc_state_dict'] = disc.state_dict()
checkpoint['optimizer_state_dict'] = optimizer.state_dict()
checkpoint['disc_optimizer_state_dict'] = optimizer_disc.state_dict()
checkpoint['scheduler_state_dict'] = scheduler.state_dict()
checkpoint['torch_rng_state'] = torch.get_rng_state()
checkpoint['numpy_rng_state'] = np.random.get_state()
checkpoint['python_rng_state'] = random.getstate()
checkpoint['adv_loss'] = running_adv_loss/(i + 1)
checkpoint['disc_loss'] = running_disc_loss/(i + 1)
checkpoint['feature_loss'] = running_feature_loss/(i + 1)
checkpoint['reg_loss'] = running_reg_loss/(i + 1)
if inference_test:
print("running inference test...")
out = model.process(features, periods).cpu().numpy()
wavfile.write(os.path.join(inference_folder, f'{model_name}_epoch_{ep}.wav'), 16000, out)
if ref is not None:
mos = pesq.pesq(16000, ref, out, mode='wb')
print(f"MOS (PESQ): {mos}")
torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_epoch_{ep}.pth'))
torch.save(checkpoint, os.path.join(checkpoint_dir, checkpoint_prefix + f'_last.pth'))
print()
print('Done')