mirror of
https://github.com/xiph/opus.git
synced 2025-06-01 16:17:42 +00:00
141 lines
No EOL
4.5 KiB
Python
141 lines
No EOL
4.5 KiB
Python
import os
|
|
import time
|
|
import torch
|
|
import numpy as np
|
|
from scipy import signal as si
|
|
from scipy.io import wavfile
|
|
import argparse
|
|
|
|
from models import model_dict
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument('model', choices=['fwgan400', 'fwgan500'], help='model name')
|
|
parser.add_argument('weightfile', type=str, help='weight file')
|
|
parser.add_argument('input', type=str, help='input: feature file or folder with feature files')
|
|
parser.add_argument('output', type=str, help='output: wav file name or folder name, depending on input')
|
|
|
|
|
|
########################### Signal Processing Layers ###########################
|
|
|
|
def preemphasis(x, coef= -0.85):
|
|
|
|
return si.lfilter(np.array([1.0, coef]), np.array([1.0]), x).astype('float32')
|
|
|
|
def deemphasis(x, coef= -0.85):
|
|
|
|
return si.lfilter(np.array([1.0]), np.array([1.0, coef]), x).astype('float32')
|
|
|
|
gamma = 0.92
|
|
weighting_vector = np.array([gamma**i for i in range(16,0,-1)])
|
|
|
|
|
|
def lpc_synthesis_one_frame(frame, filt, buffer, weighting_vector=np.ones(16)):
|
|
|
|
out = np.zeros_like(frame)
|
|
|
|
filt = np.flip(filt)
|
|
|
|
inp = frame[:]
|
|
|
|
|
|
for i in range(0, inp.shape[0]):
|
|
|
|
s = inp[i] - np.dot(buffer*weighting_vector, filt)
|
|
|
|
buffer[0] = s
|
|
|
|
buffer = np.roll(buffer, -1)
|
|
|
|
out[i] = s
|
|
|
|
return out
|
|
|
|
def inverse_perceptual_weighting (pw_signal, filters, weighting_vector):
|
|
|
|
#inverse perceptual weighting= H_preemph / W(z/gamma)
|
|
|
|
pw_signal = preemphasis(pw_signal)
|
|
|
|
signal = np.zeros_like(pw_signal)
|
|
buffer = np.zeros(16)
|
|
num_frames = pw_signal.shape[0] //160
|
|
assert num_frames == filters.shape[0]
|
|
|
|
for frame_idx in range(0, num_frames):
|
|
|
|
in_frame = pw_signal[frame_idx*160: (frame_idx+1)*160][:]
|
|
out_sig_frame = lpc_synthesis_one_frame(in_frame, filters[frame_idx, :], buffer, weighting_vector)
|
|
signal[frame_idx*160: (frame_idx+1)*160] = out_sig_frame[:]
|
|
buffer[:] = out_sig_frame[-16:]
|
|
|
|
return signal
|
|
|
|
|
|
def process_item(generator, feature_filename, output_filename, verbose=False):
|
|
|
|
feat = np.memmap(feature_filename, dtype='float32', mode='r')
|
|
|
|
num_feat_frames = len(feat) // 36
|
|
feat = np.reshape(feat, (num_feat_frames, 36))
|
|
|
|
bfcc = np.copy(feat[:, :18])
|
|
corr = np.copy(feat[:, 19:20]) + 0.5
|
|
bfcc_with_corr = torch.from_numpy(np.hstack((bfcc, corr))).type(torch.FloatTensor).unsqueeze(0)#.to(device)
|
|
|
|
period = torch.from_numpy((0.1 + 50 * np.copy(feat[:, 18:19]) + 100)\
|
|
.astype('int32')).type(torch.long).view(1,-1)#.to(device)
|
|
|
|
lpc_filters = np.copy(feat[:, -16:])
|
|
|
|
start_time = time.time()
|
|
x1 = generator(period, bfcc_with_corr, torch.zeros(1,320)) #this means the vocoder runs in complete synthesis mode with zero history audio frames
|
|
end_time = time.time()
|
|
total_time = end_time - start_time
|
|
x1 = x1.squeeze(1).squeeze(0).detach().cpu().numpy()
|
|
gen_seconds = len(x1)/16000
|
|
out = deemphasis(inverse_perceptual_weighting(x1, lpc_filters, weighting_vector))
|
|
if verbose:
|
|
print(f"Took {total_time:.3f}s to generate {len(x1)} samples ({gen_seconds}s) -> {gen_seconds/total_time:.2f}x real time")
|
|
|
|
out = np.clip(np.round(2**15 * out), -2**15, 2**15 -1).astype(np.int16)
|
|
wavfile.write(output_filename, 16000, out)
|
|
|
|
|
|
########################### The inference loop over folder containing lpcnet feature files #################################
|
|
if __name__ == "__main__":
|
|
|
|
args = parser.parse_args()
|
|
|
|
generator = model_dict[args.model]()
|
|
|
|
|
|
#Load the FWGAN500Hz Checkpoint
|
|
saved_gen= torch.load(args.weightfile, map_location='cpu')
|
|
generator.load_state_dict(saved_gen)
|
|
|
|
#this is just to remove the weight_norm from the model layers as it's no longer needed
|
|
def _remove_weight_norm(m):
|
|
try:
|
|
torch.nn.utils.remove_weight_norm(m)
|
|
except ValueError: # this module didn't have weight norm
|
|
return
|
|
generator.apply(_remove_weight_norm)
|
|
|
|
#enable inference mode
|
|
generator = generator.eval()
|
|
|
|
print('Successfully loaded the generator model ... start generation:')
|
|
|
|
if os.path.isdir(args.input):
|
|
|
|
os.makedirs(args.output, exist_ok=True)
|
|
|
|
for fn in os.listdir(args.input):
|
|
print(f"processing input {fn}...")
|
|
feature_filename = os.path.join(args.input, fn)
|
|
output_filename = os.path.join(args.output, os.path.splitext(fn)[0] + f"_{args.model}.wav")
|
|
process_item(generator, feature_filename, output_filename)
|
|
else:
|
|
process_item(generator, args.input, args.output)
|
|
|
|
print("Finished!") |