mirror of
https://github.com/xiph/opus.git
synced 2025-05-14 23:48:28 +00:00

Some checks failed
CMake / CMake/Linux/Lib/X64/Release (push) Has been cancelled
CMake / CMake/MacOSX/Lib/X64/Release (push) Has been cancelled
CMake / CMake/MacOSX/Framework/X64/Release (push) Has been cancelled
CMake / CMake/Linux/So/X64/Release (push) Has been cancelled
CMake / CMake/MacOSX/So/X64/Release (push) Has been cancelled
Repository / Check trailing white spaces (push) Has been cancelled
Autotools / AutoMake/Linux/GCC (push) Has been cancelled
Autotools / AutoMake/Linux/GCC/EnableDNN (push) Has been cancelled
Autotools / AutoMake/Linux/GCC/EnableCustomModes (push) Has been cancelled
Autotools / AutoMake/Linux/GCC/EnableAssertions (push) Has been cancelled
CMake / Test build with CMake 3.16.0 (push) Has been cancelled
CMake / CMake MINGW (push) Has been cancelled
CMake / CMake/Android/So/ARMv8/Release (push) Has been cancelled
CMake / CMake/Android/Lib/ARMv8/Release (push) Has been cancelled
CMake / CMake/Android/So/X86/Release (push) Has been cancelled
CMake / CMake/Android/Lib/X86/Release (push) Has been cancelled
CMake / CMake/Android/So/X64/Release (push) Has been cancelled
CMake / CMake/Android/Lib/X64/Release (push) Has been cancelled
CMake / CMake/AssertionsFuzz/Linux/Lib/X64/Release (push) Has been cancelled
CMake / CMake/AssertionsFuzz/MacOSX/Lib/X64/Release (push) Has been cancelled
CMake / CMake/CustomModes/Linux/Lib/X64/Release (push) Has been cancelled
CMake / CMake/iOS/Framework/arm64/Release (push) Has been cancelled
CMake / CMake/iOS/Dll/arm64/Release (push) Has been cancelled
CMake / CMake/iOS/Lib/arm64/Release (push) Has been cancelled
CMake / CMake/Windows/Dll/ARMv8/Release (push) Has been cancelled
CMake / CMake/Windows/Lib/armv8/Release (push) Has been cancelled
CMake / CMake/Windows/Dll/X64/Release (push) Has been cancelled
CMake / CMake/Windows/Dll/X86/Release (push) Has been cancelled
CMake / CMake/AssertionsFuzz/Windows/Lib/X64/Release (push) Has been cancelled
CMake / CMake/Windows/Lib/X64/Release (push) Has been cancelled
CMake / CMake/Windows/Lib/X86/Release (push) Has been cancelled
DRED / CMake/Android/Lib/ARMv8/Release (push) Has been cancelled
DRED / CMake/Android/Lib/X64/Release (push) Has been cancelled
DRED / CMake/MacOSX/Lib/X64/Release (push) Has been cancelled
DRED / CMake/Linux/Lib/X64/Release (push) Has been cancelled
DRED / CMake/iOS/Lib/arm64/Release (push) Has been cancelled
DRED / CMake/Windows/Lib/armv8/Release (push) Has been cancelled
DRED / CMake/Windows/Lib/X64/Release (push) Has been cancelled
DRED / AutoTools/Linux/Clang (push) Has been cancelled
DRED / AutoTools/Linux/GCC (push) Has been cancelled
If the signal exceeds -1..1 then, as error handling, the soft_clip function forces the signal back into -1..1. This is problematic since the search loop to find the next sample exceeding -1..1 is slow. If cheap on the current platform, while doing -2..2 hardclipping we can also detect if the signal never exceeds -1..1, avoiding the need for a second search loop. Signed-off-by: Jean-Marc Valin <jeanmarcv@google.com>
501 lines
16 KiB
C
501 lines
16 KiB
C
/* Copyright (c) 2002-2008 Jean-Marc Valin
|
|
Copyright (c) 2007-2008 CSIRO
|
|
Copyright (c) 2007-2009 Xiph.Org Foundation
|
|
Copyright (c) 2024 Arm Limited
|
|
Written by Jean-Marc Valin, and Yunho Huh */
|
|
/**
|
|
@file mathops.h
|
|
@brief Various math functions
|
|
*/
|
|
/*
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
- Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
- Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifndef MATHOPS_H
|
|
#define MATHOPS_H
|
|
|
|
#include "arch.h"
|
|
#include "entcode.h"
|
|
#include "os_support.h"
|
|
|
|
#if defined(OPUS_ARM_MAY_HAVE_NEON_INTR)
|
|
#include "arm/mathops_arm.h"
|
|
#endif
|
|
|
|
#define PI 3.141592653f
|
|
|
|
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
|
|
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
|
|
|
|
unsigned isqrt32(opus_uint32 _val);
|
|
|
|
/* CELT doesn't need it for fixed-point, by analysis.c does. */
|
|
#if !defined(FIXED_POINT) || defined(ANALYSIS_C)
|
|
#define cA 0.43157974f
|
|
#define cB 0.67848403f
|
|
#define cC 0.08595542f
|
|
#define cE ((float)PI/2)
|
|
static OPUS_INLINE float fast_atan2f(float y, float x) {
|
|
float x2, y2;
|
|
x2 = x*x;
|
|
y2 = y*y;
|
|
/* For very small values, we don't care about the answer, so
|
|
we can just return 0. */
|
|
if (x2 + y2 < 1e-18f)
|
|
{
|
|
return 0;
|
|
}
|
|
if(x2<y2){
|
|
float den = (y2 + cB*x2) * (y2 + cC*x2);
|
|
return -x*y*(y2 + cA*x2) / den + (y<0 ? -cE : cE);
|
|
}else{
|
|
float den = (x2 + cB*y2) * (x2 + cC*y2);
|
|
return x*y*(x2 + cA*y2) / den + (y<0 ? -cE : cE) - (x*y<0 ? -cE : cE);
|
|
}
|
|
}
|
|
#undef cA
|
|
#undef cB
|
|
#undef cC
|
|
#undef cE
|
|
#endif
|
|
|
|
|
|
#ifndef OVERRIDE_CELT_MAXABS16
|
|
static OPUS_INLINE opus_val32 celt_maxabs16(const opus_val16 *x, int len)
|
|
{
|
|
int i;
|
|
opus_val16 maxval = 0;
|
|
opus_val16 minval = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
maxval = MAX16(maxval, x[i]);
|
|
minval = MIN16(minval, x[i]);
|
|
}
|
|
return MAX32(EXTEND32(maxval),-EXTEND32(minval));
|
|
}
|
|
#endif
|
|
|
|
#ifdef ENABLE_RES24
|
|
static OPUS_INLINE opus_res celt_maxabs_res(const opus_res *x, int len)
|
|
{
|
|
int i;
|
|
opus_res maxval = 0;
|
|
opus_res minval = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
maxval = MAX32(maxval, x[i]);
|
|
minval = MIN32(minval, x[i]);
|
|
}
|
|
/* opus_res should never reach such amplitude, so we should be safe. */
|
|
celt_sig_assert(minval != -2147483648);
|
|
return MAX32(maxval,-minval);
|
|
}
|
|
#else
|
|
#define celt_maxabs_res celt_maxabs16
|
|
#endif
|
|
|
|
|
|
#ifndef OVERRIDE_CELT_MAXABS32
|
|
#ifdef FIXED_POINT
|
|
static OPUS_INLINE opus_val32 celt_maxabs32(const opus_val32 *x, int len)
|
|
{
|
|
int i;
|
|
opus_val32 maxval = 0;
|
|
opus_val32 minval = 0;
|
|
for (i=0;i<len;i++)
|
|
{
|
|
maxval = MAX32(maxval, x[i]);
|
|
minval = MIN32(minval, x[i]);
|
|
}
|
|
return MAX32(maxval, -minval);
|
|
}
|
|
#else
|
|
#define celt_maxabs32(x,len) celt_maxabs16(x,len)
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#ifndef FIXED_POINT
|
|
|
|
#define celt_sqrt(x) ((float)sqrt(x))
|
|
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
|
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
|
|
#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
|
|
#define celt_rcp(x) (1.f/(x))
|
|
#define celt_div(a,b) ((a)/(b))
|
|
#define frac_div32(a,b) ((float)(a)/(b))
|
|
#define frac_div32_q29(a,b) frac_div32(a,b)
|
|
|
|
#ifdef FLOAT_APPROX
|
|
/* Calculates the base-2 logarithm (log2(x)) of a number. It is designed for
|
|
* systems using radix-2 floating-point representation, with the exponent
|
|
* located at bits 23 to 30 and an offset of 127. Note that special cases like
|
|
* denormalized numbers, positive/negative infinity, and NaN are not handled.
|
|
* log2(x) = log2(x^exponent * mantissa)
|
|
* = exponent + log2(mantissa) */
|
|
|
|
/* Log2 x normalization single precision coefficients calculated by
|
|
* 1 / (1 + 0.125 * index).
|
|
* Coefficients in Double Precision
|
|
* double log2_x_norm_coeff[8] = {
|
|
* 1.0000000000000000000, 8.888888888888888e-01,
|
|
* 8.000000000000000e-01, 7.272727272727273e-01,
|
|
* 6.666666666666666e-01, 6.153846153846154e-01,
|
|
* 5.714285714285714e-01, 5.333333333333333e-01} */
|
|
static const float log2_x_norm_coeff[8] = {
|
|
1.000000000000000000000000000f, 8.88888895511627197265625e-01f,
|
|
8.00000000000000000000000e-01f, 7.27272748947143554687500e-01f,
|
|
6.66666686534881591796875e-01f, 6.15384638309478759765625e-01f,
|
|
5.71428596973419189453125e-01f, 5.33333361148834228515625e-01f};
|
|
|
|
/* Log2 y normalization single precision coefficients calculated by
|
|
* log2(1 + 0.125 * index).
|
|
* Coefficients in Double Precision
|
|
* double log2_y_norm_coeff[8] = {
|
|
* 0.0000000000000000000, 1.699250014423124e-01,
|
|
* 3.219280948873623e-01, 4.594316186372973e-01,
|
|
* 5.849625007211562e-01, 7.004397181410922e-01,
|
|
* 8.073549220576041e-01, 9.068905956085185e-01}; */
|
|
static const float log2_y_norm_coeff[8] = {
|
|
0.0000000000000000000000000000f, 1.699250042438507080078125e-01f,
|
|
3.219280838966369628906250e-01f, 4.594316184520721435546875e-01f,
|
|
5.849624872207641601562500e-01f, 7.004396915435791015625000e-01f,
|
|
8.073549270629882812500000e-01f, 9.068905711174011230468750e-01f};
|
|
|
|
static OPUS_INLINE float celt_log2(float x)
|
|
{
|
|
opus_int32 integer;
|
|
opus_int32 range_idx;
|
|
union {
|
|
float f;
|
|
opus_uint32 i;
|
|
} in;
|
|
in.f = x;
|
|
integer = (opus_int32)(in.i>>23)-127;
|
|
in.i = (opus_int32)in.i - (opus_int32)((opus_uint32)integer<<23);
|
|
|
|
/* Normalize the mantissa range from [1, 2] to [1,1.125], and then shift x
|
|
* by 1.0625 to [-0.0625, 0.0625]. */
|
|
range_idx = (in.i >> 20) & 0x7;
|
|
in.f = in.f * log2_x_norm_coeff[range_idx] - 1.0625f;
|
|
|
|
/* Polynomial coefficients approximated in the [1, 1.125] range.
|
|
* Lolremez command: lolremez --degree 4 --range -0.0625:0.0625
|
|
* "log(x+1.0625)/log(2)"
|
|
* Coefficients in Double Precision
|
|
* A0: 8.7462840624502679e-2 A1: 1.3578296070972002
|
|
* A2: -6.3897703690210047e-1 A3: 4.0197125617419959e-1
|
|
* A4: -2.8415445877832832e-1 */
|
|
#define LOG2_COEFF_A0 8.74628424644470214843750000e-02f
|
|
#define LOG2_COEFF_A1 1.357829570770263671875000000000f
|
|
#define LOG2_COEFF_A2 -6.3897705078125000000000000e-01f
|
|
#define LOG2_COEFF_A3 4.01971250772476196289062500e-01f
|
|
#define LOG2_COEFF_A4 -2.8415444493293762207031250e-01f
|
|
in.f = LOG2_COEFF_A0 + in.f * (LOG2_COEFF_A1
|
|
+ in.f * (LOG2_COEFF_A2
|
|
+ in.f * (LOG2_COEFF_A3
|
|
+ in.f * (LOG2_COEFF_A4))));
|
|
return integer + in.f + log2_y_norm_coeff[range_idx];
|
|
}
|
|
|
|
/* Calculates an approximation of 2^x. The approximation was achieved by
|
|
* employing a base-2 exponential function and utilizing a Remez approximation
|
|
* of order 5, ensuring a controlled relative error.
|
|
* exp2(x) = exp2(integer + fraction)
|
|
* = exp2(integer) * exp2(fraction) */
|
|
static OPUS_INLINE float celt_exp2(float x)
|
|
{
|
|
opus_int32 integer;
|
|
float frac;
|
|
union {
|
|
float f;
|
|
opus_uint32 i;
|
|
} res;
|
|
integer = (int)floor(x);
|
|
if (integer < -50)
|
|
return 0;
|
|
frac = x-integer;
|
|
|
|
/* Polynomial coefficients approximated in the [0, 1] range.
|
|
* Lolremez command: lolremez --degree 5 --range 0:1
|
|
* "exp(x*0.693147180559945)" "exp(x*0.693147180559945)"
|
|
* NOTE: log(2) ~ 0.693147180559945 */
|
|
#define EXP2_COEFF_A0 9.999999403953552246093750000000e-01f
|
|
#define EXP2_COEFF_A1 6.931530833244323730468750000000e-01f
|
|
#define EXP2_COEFF_A2 2.401536107063293457031250000000e-01f
|
|
#define EXP2_COEFF_A3 5.582631751894950866699218750000e-02f
|
|
#define EXP2_COEFF_A4 8.989339694380760192871093750000e-03f
|
|
#define EXP2_COEFF_A5 1.877576694823801517486572265625e-03f
|
|
res.f = EXP2_COEFF_A0 + frac * (EXP2_COEFF_A1
|
|
+ frac * (EXP2_COEFF_A2
|
|
+ frac * (EXP2_COEFF_A3
|
|
+ frac * (EXP2_COEFF_A4
|
|
+ frac * (EXP2_COEFF_A5)))));
|
|
res.i = (opus_uint32)((opus_int32)res.i + (opus_int32)((opus_uint32)integer<<23)) & 0x7fffffff;
|
|
return res.f;
|
|
}
|
|
|
|
#else
|
|
#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
|
|
#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
|
|
#endif
|
|
|
|
#define celt_exp2_db celt_exp2
|
|
#define celt_log2_db celt_log2
|
|
|
|
#endif
|
|
|
|
#ifdef FIXED_POINT
|
|
|
|
#include "os_support.h"
|
|
|
|
#ifndef OVERRIDE_CELT_ILOG2
|
|
/** Integer log in base2. Undefined for zero and negative numbers */
|
|
static OPUS_INLINE opus_int16 celt_ilog2(opus_int32 x)
|
|
{
|
|
celt_sig_assert(x>0);
|
|
return EC_ILOG(x)-1;
|
|
}
|
|
#endif
|
|
|
|
|
|
/** Integer log in base2. Defined for zero, but not for negative numbers */
|
|
static OPUS_INLINE opus_int16 celt_zlog2(opus_val32 x)
|
|
{
|
|
return x <= 0 ? 0 : celt_ilog2(x);
|
|
}
|
|
|
|
opus_val16 celt_rsqrt_norm(opus_val32 x);
|
|
|
|
opus_val32 celt_sqrt(opus_val32 x);
|
|
|
|
opus_val16 celt_cos_norm(opus_val32 x);
|
|
|
|
/** Base-2 logarithm approximation (log2(x)). (Q14 input, Q10 output) */
|
|
static OPUS_INLINE opus_val16 celt_log2(opus_val32 x)
|
|
{
|
|
int i;
|
|
opus_val16 n, frac;
|
|
/* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
|
|
0.15530808010959576, -0.08556153059057618 */
|
|
static const opus_val16 C[5] = {-6801+(1<<(13-10)), 15746, -5217, 2545, -1401};
|
|
if (x==0)
|
|
return -32767;
|
|
i = celt_ilog2(x);
|
|
n = VSHR32(x,i-15)-32768-16384;
|
|
frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
|
|
return SHL32(i-13,10)+SHR32(frac,14-10);
|
|
}
|
|
|
|
/*
|
|
K0 = 1
|
|
K1 = log(2)
|
|
K2 = 3-4*log(2)
|
|
K3 = 3*log(2) - 2
|
|
*/
|
|
#define D0 16383
|
|
#define D1 22804
|
|
#define D2 14819
|
|
#define D3 10204
|
|
|
|
static OPUS_INLINE opus_val32 celt_exp2_frac(opus_val16 x)
|
|
{
|
|
opus_val16 frac;
|
|
frac = SHL16(x, 4);
|
|
return ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
|
|
}
|
|
|
|
#undef D0
|
|
#undef D1
|
|
#undef D2
|
|
#undef D3
|
|
|
|
/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
|
|
static OPUS_INLINE opus_val32 celt_exp2(opus_val16 x)
|
|
{
|
|
int integer;
|
|
opus_val16 frac;
|
|
integer = SHR16(x,10);
|
|
if (integer>14)
|
|
return 0x7f000000;
|
|
else if (integer < -15)
|
|
return 0;
|
|
frac = celt_exp2_frac(x-SHL16(integer,10));
|
|
return VSHR32(EXTEND32(frac), -integer-2);
|
|
}
|
|
|
|
#ifdef ENABLE_QEXT
|
|
|
|
/* Calculates the base-2 logarithm of a Q14 input value. The result is returned
|
|
* in Q(DB_SHIFT). If the input value is 0, the function will output -32.0f. */
|
|
static OPUS_INLINE opus_val32 celt_log2_db(opus_val32 x) {
|
|
/* Q30 */
|
|
static const opus_val32 log2_x_norm_coeff[8] = {
|
|
1073741824, 954437184, 858993472, 780903168,
|
|
715827904, 660764224, 613566784, 572662336};
|
|
/* Q24 */
|
|
static const opus_val32 log2_y_norm_coeff[8] = {
|
|
0, 2850868, 5401057, 7707983,
|
|
9814042, 11751428, 13545168, 15215099};
|
|
static const opus_val32 LOG2_COEFF_A0 = 1467383; /* Q24 */
|
|
static const opus_val32 LOG2_COEFF_A1 = 182244800; /* Q27 */
|
|
static const opus_val32 LOG2_COEFF_A2 = -21440512; /* Q25 */
|
|
static const opus_val32 LOG2_COEFF_A3 = 107903336; /* Q28 */
|
|
static const opus_val32 LOG2_COEFF_A4 = -610217024; /* Q31 */
|
|
|
|
opus_int32 integer, norm_coeff_idx, tmp;
|
|
opus_val32 mantissa;
|
|
if (x==0) {
|
|
return -536870912; /* -32.0f */
|
|
}
|
|
integer = SUB32(celt_ilog2(x), 14); /* Q0 */
|
|
mantissa = VSHR32(x, integer + 14 - 29); /* Q29 */
|
|
norm_coeff_idx = SHR32(mantissa, 29 - 3) & 0x7;
|
|
/* mantissa is in Q28 (29 + Q_NORM_CONST - 31 where Q_NORM_CONST is Q30)
|
|
* 285212672 (Q28) is 1.0625f. */
|
|
mantissa = SUB32(MULT32_32_Q31(mantissa, log2_x_norm_coeff[norm_coeff_idx]),
|
|
285212672);
|
|
|
|
/* q_a3(Q28): q_mantissa + q_a4 - 31
|
|
* q_a2(Q25): q_mantissa + q_a3 - 31
|
|
* q_a1(Q27): q_mantissa + q_a2 - 31 + 5
|
|
* q_a0(Q24): q_mantissa + q_a1 - 31
|
|
* where q_mantissa is Q28 */
|
|
/* Split evaluation in steps to avoid exploding macro expansion. */
|
|
tmp = MULT32_32_Q31(mantissa, LOG2_COEFF_A4);
|
|
tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A3, tmp));
|
|
tmp = SHL32(MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A2, tmp)), 5 /* SHL32 for LOG2_COEFF_A1 */);
|
|
tmp = MULT32_32_Q31(mantissa, ADD32(LOG2_COEFF_A1, tmp));
|
|
return ADD32(log2_y_norm_coeff[norm_coeff_idx],
|
|
ADD32(SHL32(integer, DB_SHIFT),
|
|
ADD32(LOG2_COEFF_A0, tmp)));
|
|
}
|
|
|
|
/* Calculates exp2 for Q28 within a specific range (0 to 1.0) using fixed-point
|
|
* arithmetic. The input number must be adjusted for Q DB_SHIFT. */
|
|
static OPUS_INLINE opus_val32 celt_exp2_db_frac(opus_val32 x)
|
|
{
|
|
/* Approximation constants. */
|
|
static const opus_int32 EXP2_COEFF_A0 = 268435440; /* Q28 */
|
|
static const opus_int32 EXP2_COEFF_A1 = 744267456; /* Q30 */
|
|
static const opus_int32 EXP2_COEFF_A2 = 1031451904; /* Q32 */
|
|
static const opus_int32 EXP2_COEFF_A3 = 959088832; /* Q34 */
|
|
static const opus_int32 EXP2_COEFF_A4 = 617742720; /* Q36 */
|
|
static const opus_int32 EXP2_COEFF_A5 = 516104352; /* Q38 */
|
|
opus_int32 tmp;
|
|
/* Converts input value from Q24 to Q29. */
|
|
opus_val32 x_q29 = SHL32(x, 29 - 24);
|
|
/* Split evaluation in steps to avoid exploding macro expansion. */
|
|
tmp = ADD32(EXP2_COEFF_A4, MULT32_32_Q31(x_q29, EXP2_COEFF_A5));
|
|
tmp = ADD32(EXP2_COEFF_A3, MULT32_32_Q31(x_q29, tmp));
|
|
tmp = ADD32(EXP2_COEFF_A2, MULT32_32_Q31(x_q29, tmp));
|
|
tmp = ADD32(EXP2_COEFF_A1, MULT32_32_Q31(x_q29, tmp));
|
|
return ADD32(EXP2_COEFF_A0, MULT32_32_Q31(x_q29, tmp));
|
|
}
|
|
|
|
/* Calculates exp2 for Q16 using fixed-point arithmetic. The input number must
|
|
* be adjusted for Q DB_SHIFT. */
|
|
static OPUS_INLINE opus_val32 celt_exp2_db(opus_val32 x)
|
|
{
|
|
int integer;
|
|
opus_val32 frac;
|
|
integer = SHR32(x,DB_SHIFT);
|
|
if (integer>14)
|
|
return 0x7f000000;
|
|
else if (integer <= -17)
|
|
return 0;
|
|
frac = celt_exp2_db_frac(x-SHL32(integer, DB_SHIFT)); /* Q28 */
|
|
return VSHR32(frac, -integer + 28 - 16); /* Q16 */
|
|
}
|
|
#else
|
|
|
|
#define celt_log2_db(x) SHL32(EXTEND32(celt_log2(x)), DB_SHIFT-10)
|
|
#define celt_exp2_db_frac(x) SHL32(celt_exp2_frac(PSHR32(x, DB_SHIFT-10)), 14)
|
|
#define celt_exp2_db(x) celt_exp2(PSHR32(x, DB_SHIFT-10))
|
|
|
|
#endif
|
|
|
|
|
|
opus_val32 celt_rcp(opus_val32 x);
|
|
|
|
#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
|
|
|
|
opus_val32 frac_div32_q29(opus_val32 a, opus_val32 b);
|
|
opus_val32 frac_div32(opus_val32 a, opus_val32 b);
|
|
|
|
#define M1 32767
|
|
#define M2 -21
|
|
#define M3 -11943
|
|
#define M4 4936
|
|
|
|
/* Atan approximation using a 4th order polynomial. Input is in Q15 format
|
|
and normalized by pi/4. Output is in Q15 format */
|
|
static OPUS_INLINE opus_val16 celt_atan01(opus_val16 x)
|
|
{
|
|
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
|
}
|
|
|
|
#undef M1
|
|
#undef M2
|
|
#undef M3
|
|
#undef M4
|
|
|
|
/* atan2() approximation valid for positive input values */
|
|
static OPUS_INLINE opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
|
|
{
|
|
if (y < x)
|
|
{
|
|
opus_val32 arg;
|
|
arg = celt_div(SHL32(EXTEND32(y),15),x);
|
|
if (arg >= 32767)
|
|
arg = 32767;
|
|
return SHR16(celt_atan01(EXTRACT16(arg)),1);
|
|
} else {
|
|
opus_val32 arg;
|
|
arg = celt_div(SHL32(EXTEND32(x),15),y);
|
|
if (arg >= 32767)
|
|
arg = 32767;
|
|
return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
|
|
}
|
|
}
|
|
|
|
#endif /* FIXED_POINT */
|
|
|
|
#ifndef DISABLE_FLOAT_API
|
|
|
|
void celt_float2int16_c(const float * OPUS_RESTRICT in, short * OPUS_RESTRICT out, int cnt);
|
|
|
|
#ifndef OVERRIDE_FLOAT2INT16
|
|
#define celt_float2int16(in, out, cnt, arch) ((void)(arch), celt_float2int16_c(in, out, cnt))
|
|
#endif
|
|
|
|
int opus_limit2_checkwithin1_c(float *samples, int cnt);
|
|
|
|
#ifndef OVERRIDE_LIMIT2_CHECKWITHIN1
|
|
#define opus_limit2_checkwithin1(samples, cnt, arch) ((void)(arch), opus_limit2_checkwithin1_c(samples, cnt))
|
|
#endif
|
|
|
|
#endif /* DISABLE_FLOAT_API */
|
|
|
|
#endif /* MATHOPS_H */
|