import numpy as np import scipy.signal def power_spectrum(x, window_size=160, hop_size=40, window='hamming'): num_spectra = (len(x) - window_size - hop_size) // hop_size window = scipy.signal.get_window(window, window_size) N = window_size // 2 frames = np.concatenate([x[np.newaxis, i * hop_size : i * hop_size + window_size] for i in range(num_spectra)]) * window psd = np.abs(np.fft.fft(frames, axis=1)[:, :N + 1]) ** 2 return psd def frequency_mask(num_bands, up_factor, down_factor): up_mask = np.zeros((num_bands, num_bands)) down_mask = np.zeros((num_bands, num_bands)) for i in range(num_bands): up_mask[i, : i + 1] = up_factor ** np.arange(i, -1, -1) down_mask[i, i :] = down_factor ** np.arange(num_bands - i) return down_mask @ up_mask def rect_fb(band_limits, num_bins=None): num_bands = len(band_limits) - 1 if num_bins is None: num_bins = band_limits[-1] fb = np.zeros((num_bands, num_bins)) for i in range(num_bands): fb[i, band_limits[i]:band_limits[i+1]] = 1 return fb def compare(x, y): """ Modified version of opus_compare for 16 kHz mono signals Args: x (np.ndarray): reference input signal scaled to [-1, 1] y (np.ndarray): test signal scaled to [-1, 1] Returns: float: perceptually weighted error """ # filter bank: bark scale with minimum-2-bin bands and cutoff at 7.5 kHz band_limits = [0, 2, 4, 6, 7, 9, 11, 13, 15, 18, 22, 26, 31, 36, 43, 51, 60, 75] num_bands = len(band_limits) - 1 fb = rect_fb(band_limits, num_bins=81) # trim samples to same size num_samples = min(len(x), len(y)) x = x[:num_samples] * 2**15 y = y[:num_samples] * 2**15 psd_x = power_spectrum(x) + 100000 psd_y = power_spectrum(y) + 100000 num_frames = psd_x.shape[0] # average band energies be_x = (psd_x @ fb.T) / np.sum(fb, axis=1) # frequecy masking f_mask = frequency_mask(num_bands, 0.1, 0.03) mask_x = be_x @ f_mask.T # temporal masking for i in range(1, num_frames): mask_x[i, :] += 0.5 * mask_x[i-1, :] # apply mask masked_psd_x = psd_x + 0.1 * (mask_x @ fb) masked_psd_y = psd_y + 0.1 * (mask_x @ fb) # 2-frame average masked_psd_x = masked_psd_x[1:] + masked_psd_x[:-1] masked_psd_y = masked_psd_y[1:] + masked_psd_y[:-1] # distortion metric re = masked_psd_y / masked_psd_x im = re - np.log(re) - 1 Eb = ((im @ fb.T) / np.sum(fb, axis=1)) Ef = np.mean(Eb ** 2, axis=1) err = np.mean(Ef ** 4, axis=0) ** (1/16) return float(err)