#!/usr/bin/python3 import math from keras.models import Model from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation from keras import backend as K from keras.initializers import Initializer from keras.callbacks import Callback from mdense import MDense import numpy as np import h5py import sys rnn_units1=256 rnn_units2=32 pcm_bits = 8 embed_size = 128 pcm_levels = 2**pcm_bits nb_used_features = 38 class Sparsify(Callback): def __init__(self, t_start, t_end, interval, density): super(Sparsify, self).__init__() self.batch = 0 self.t_start = t_start self.t_end = t_end self.interval = interval self.final_density = density def on_batch_end(self, batch, logs=None): #print("batch number", self.batch) self.batch += 1 if self.batch < self.t_start or ((self.batch-self.t_start) % self.interval != 0 and self.batch < self.t_end): #print("don't constrain"); pass else: #print("constrain"); layer = self.model.get_layer('cu_dnngru_1') w = layer.get_weights() p = w[1] nb = p.shape[1]//p.shape[0] N = p.shape[0] #print("nb = ", nb, ", N = ", N); #print(p.shape) density = self.final_density if self.batch < self.t_end: r = 1 - (self.batch-self.t_start)/(self.t_end - self.t_start) density = 1 - (1-self.final_density)*(1 - r*r*r) #print ("density = ", density) for k in range(nb): A = p[:, k*N:(k+1)*N] L=np.reshape(A, (N, N//16, 16)) S=np.sum(L*L, axis=-1) SS=np.sort(np.reshape(S, (-1,))) thresh = SS[round(N*N//16*(1-density))] mask = (S>=thresh).astype('float32'); mask = np.repeat(mask, 16, axis=1) p[:, k*N:(k+1)*N] = p[:, k*N:(k+1)*N]*mask #print(thresh, np.mean(mask)) w[1] = p layer.set_weights(w) class PCMInit(Initializer): def __init__(self, gain=.1, seed=None): self.gain = gain self.seed = seed def __call__(self, shape, dtype=None): num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) if self.seed is not None: np.random.seed(self.seed) a = np.random.uniform(-1.7321, 1.7321, flat_shape) #a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows #a[:,1] = .5*a[:,0]*a[:,0]*a[:,0] a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1)) return self.gain * a def get_config(self): return { 'gain': self.gain, 'seed': self.seed } def new_wavernn_model(): pcm = Input(shape=(None, 2)) exc = Input(shape=(None, 1)) feat = Input(shape=(None, nb_used_features)) pitch = Input(shape=(None, 1)) dec_feat = Input(shape=(None, 128)) dec_state1 = Input(shape=(rnn_units1,)) dec_state2 = Input(shape=(rnn_units2,)) fconv1 = Conv1D(128, 3, padding='same', activation='tanh') fconv2 = Conv1D(102, 3, padding='same', activation='tanh') embed = Embedding(256, embed_size, embeddings_initializer=PCMInit()) cpcm = Reshape((-1, embed_size*2))(embed(pcm)) embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit()) cexc = Reshape((-1, embed_size))(embed2(exc)) pembed = Embedding(256, 64) cat_feat = Concatenate()([feat, Reshape((-1, 64))(pembed(pitch))]) cfeat = fconv2(fconv1(cat_feat)) fdense1 = Dense(128, activation='tanh') fdense2 = Dense(128, activation='tanh') cfeat = Add()([cfeat, cat_feat]) cfeat = fdense2(fdense1(cfeat)) rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True) rnn2 = CuDNNGRU(rnn_units2, return_sequences=True, return_state=True) rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)]) md = MDense(pcm_levels, activation='softmax') gru_out1, _ = rnn(rnn_in) gru_out2, _ = rnn2(Concatenate()([gru_out1, rep(cfeat)])) ulaw_prob = md(gru_out2) model = Model([pcm, exc, feat, pitch], ulaw_prob) encoder = Model([feat, pitch], cfeat) dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat]) dec_gru_out1, state1 = rnn(dec_rnn_in, initial_state=dec_state1) dec_gru_out2, state2 = rnn2(Concatenate()([dec_gru_out1, dec_feat]), initial_state=dec_state2) dec_ulaw_prob = md(dec_gru_out2) decoder = Model([pcm, exc, dec_feat, dec_state1, dec_state2], [dec_ulaw_prob, state1, state2]) return model, encoder, decoder