""" /* Copyright (c) 2022 Amazon Written by Jan Buethe */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ """ import argparse from ftplib import parse150 import os import sys sys.path.append('/Users/jbuethe/Projects/DRED') os.environ['CUDA_VISIBLE_DEVICES'] = "" parser = argparse.ArgumentParser() parser.add_argument('weights', metavar="", type=str, help='model weight file in hdf5 format') parser.add_argument('output', metavar="", type=str, help='output exchange folder') parser.add_argument('--cond-size', type=int, help="conditioning size (default: 256)", default=256) parser.add_argument('--latent-dim', type=int, help="dimension of latent space (default: 80)", default=80) args = parser.parse_args() # now import the heavy stuff import tensorflow as tf import numpy as np from rdovae import new_rdovae_model from exchange.tf import dump_tf_gru_weights, dump_tf_conv1d_weights, dump_tf_dense_weights, dump_tf_embedding_weights exchange_name = { 'enc_dense1' : 'encoder_stack_layer1_dense', 'enc_dense3' : 'encoder_stack_layer3_dense', 'enc_dense5' : 'encoder_stack_layer5_dense', 'enc_dense7' : 'encoder_stack_layer7_dense', 'enc_dense8' : 'encoder_stack_layer8_dense', 'gdense1' : 'encoder_state_layer1_dense', 'gdense2' : 'encoder_state_layer2_dense', 'enc_dense2' : 'encoder_stack_layer2_gru', 'enc_dense4' : 'encoder_stack_layer4_gru', 'enc_dense6' : 'encoder_stack_layer6_gru', 'bits_dense' : 'encoder_stack_layer9_conv', 'qembedding' : 'statistical_model_embedding', 'state1' : 'decoder_state1_dense', 'state2' : 'decoder_state2_dense', 'state3' : 'decoder_state3_dense', 'dec_dense1' : 'decoder_stack_layer1_dense', 'dec_dense3' : 'decoder_stack_layer3_dense', 'dec_dense5' : 'decoder_stack_layer5_dense', 'dec_dense7' : 'decoder_stack_layer7_dense', 'dec_dense8' : 'decoder_stack_layer8_dense', 'dec_final' : 'decoder_stack_layer9_dense', 'dec_dense2' : 'decoder_stack_layer2_gru', 'dec_dense4' : 'decoder_stack_layer4_gru', 'dec_dense6' : 'decoder_stack_layer6_gru' } if __name__ == "__main__": model, encoder, decoder, qembedding = new_rdovae_model(20, args.latent_dim, cond_size=args.cond_size) model.load_weights(args.weights) os.makedirs(args.output, exist_ok=True) # encoder encoder_dense_names = [ 'enc_dense1', 'enc_dense3', 'enc_dense5', 'enc_dense7', 'enc_dense8', 'gdense1', 'gdense2' ] encoder_gru_names = [ 'enc_dense2', 'enc_dense4', 'enc_dense6' ] encoder_conv1d_names = [ 'bits_dense' ] for name in encoder_dense_names: print(f"writing layer {exchange_name[name]}...") dump_tf_dense_weights(os.path.join(args.output, exchange_name[name]), encoder.get_layer(name)) for name in encoder_gru_names: print(f"writing layer {exchange_name[name]}...") dump_tf_gru_weights(os.path.join(args.output, exchange_name[name]), encoder.get_layer(name)) for name in encoder_conv1d_names: print(f"writing layer {exchange_name[name]}...") dump_tf_conv1d_weights(os.path.join(args.output, exchange_name[name]), encoder.get_layer(name)) # qembedding print(f"writing layer {exchange_name['qembedding']}...") dump_tf_embedding_weights(os.path.join(args.output, exchange_name['qembedding']), qembedding) # decoder decoder_dense_names = [ 'state1', 'state2', 'state3', 'dec_dense1', 'dec_dense3', 'dec_dense5', 'dec_dense7', 'dec_dense8', 'dec_final' ] decoder_gru_names = [ 'dec_dense2', 'dec_dense4', 'dec_dense6' ] for name in decoder_dense_names: print(f"writing layer {exchange_name[name]}...") dump_tf_dense_weights(os.path.join(args.output, exchange_name[name]), decoder.get_layer(name)) for name in decoder_gru_names: print(f"writing layer {exchange_name[name]}...") dump_tf_gru_weights(os.path.join(args.output, exchange_name[name]), decoder.get_layer(name))