#!/usr/bin/python3 '''Copyright (c) 2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' # Train a LPCNet model (note not a Wavenet model) import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() # use this option to reserve GPU memory, e.g. for running more than # one thing at a time. Best to disable for GPUs with small memory config.gpu_options.per_process_gpu_memory_fraction = 0.44 set_session(tf.Session(config=config)) nb_epochs = 120 # Try reducing batch_size if you run out of memory on your GPU batch_size = 64 model, _, _ = lpcnet.new_lpcnet_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.summary() feature_file = sys.argv[1] pcm_file = sys.argv[2] # 16 bit unsigned short PCM samples frame_size = 160 nb_features = 55 nb_used_features = model.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size # u for unquantised, load 16 bit PCM samples and convert to mu-law udata = np.fromfile(pcm_file, dtype='int16') data = lin2ulaw(udata) nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') # limit to discrete number of frames data = data[:nb_frames*pcm_chunk_size] udata = udata[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] # Noise injection: the idea is that the real system is going to be # predicting samples based on previously predicted samples rather than # from the original. Since the previously predicted samples aren't # expected to be so good, I add noise to the training data. Exactly # how the noise is added makes a huge difference in_data = np.concatenate([data[0:1], data[:-1]]); noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)]) #noise = np.round(np.concatenate([np.zeros((len(data)*1//5)), np.random.laplace(0, 1.2, len(data)*1//5), np.random.laplace(0, .77, len(data)*1//5), np.random.laplace(0, .33, len(data)*1//5), np.random.randint(-1, 1, len(data)*1//5)])) del data in_data = in_data + noise del noise in_data = np.clip(in_data, 0, 255) features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) # Note: the LPC predictor output is now calculated by the loop below, this code was # for an ealier version that implemented the prediction filter in C upred = np.zeros((nb_frames*pcm_chunk_size,), dtype='float32') # Use 16th order LPC to generate LPC prediction output upred[] and (in # mu-law form) pred[] pred_in = ulaw2lin(in_data) for i in range(2, nb_frames*feature_chunk_size): upred[i*frame_size:(i+1)*frame_size] = 0 for k in range(16): upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \ pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k] del pred_in pred = lin2ulaw(upred) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = in_data.astype('uint8') # LPC residual, which is the difference between the input speech and # the predictor output, with a slight time shift this is also the # ideal excitation in_exc out_data = lin2ulaw(udata-upred) del upred del udata in_exc = np.concatenate([out_data[0:1], out_data[:-1]]); out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1)) out_data = out_data.astype('uint8') in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1)) in_exc = in_exc.astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] features[:,:,18:36] = 0 pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1)) pred = pred.astype('uint8') periods = (.1 + 50*features[:,:,36:37]+100).astype('int16') in_data = np.concatenate([in_data, pred], axis=-1) del pred # dump models to disk as we go checkpoint = ModelCheckpoint('lpcnet15_384_10_G16_{epoch:02d}.h5') #model.load_weights('lpcnet9b_384_10_G16_01.h5') model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.1, 0.1, 0.1))])