#!/usr/bin/python3 import math from keras.models import Model from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Bidirectional, MaxPooling1D, Activation from keras import backend as K from mdense import MDense import numpy as np import h5py import sys rnn_units=256 pcm_bits = 8 pcm_levels = 1+2**pcm_bits def new_wavernn_model(): pcm = Input(shape=(None, 1)) rnn = CuDNNGRU(rnn_units, return_sequences=True) md = MDense(pcm_levels, activation='softmax') ulaw_prob = md(rnn(pcm)) model = Model(pcm, ulaw_prob) return model