/* Copyright (c) 2018 Mozilla 2008-2011 Octasic Inc. 2012-2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "opus_types.h" #include "arch.h" #include "common.h" #include "tansig_table.h" #include "nnet.h" #include "nnet_data.h" #define SOFTMAX_HACK #ifdef __AVX2__ #include static __m256 exp8_approx(__m256 X) { const __m256 K0 = _mm256_set1_ps(0.99992522f); const __m256 K1 = _mm256_set1_ps(0.69583354f); const __m256 K2 = _mm256_set1_ps(0.22606716f); const __m256 K3 = _mm256_set1_ps(0.078024523f); const __m256 log2_E = _mm256_set1_ps(1.44269504); const __m256 max_in = _mm256_set1_ps(50.f); const __m256 min_in = _mm256_set1_ps(-50.f); const __m256i mask = _mm256_set1_epi32(0x7fffffff); __m256 XF, Y; __m256i I; X = _mm256_mul_ps(X, log2_E); X = _mm256_max_ps(min_in, _mm256_min_ps(max_in, X)); XF = _mm256_floor_ps(X); I = _mm256_cvtps_epi32(XF); X = _mm256_sub_ps(X, XF); Y = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(K3, X, K2), X, K1), X, K0); I = _mm256_slli_epi32(I, 23); Y = _mm256_castsi256_ps(_mm256_and_si256(mask, _mm256_add_epi32(I, _mm256_castps_si256(Y)))); return Y; } static float celt_exp(float x) { float out[8]; __m256 X, Y; X = _mm256_set1_ps(x); Y = exp8_approx(X); _mm256_storeu_ps(out, Y); return out[0]; } static void softmax(float *y, const float *x, int N) { int i; for (i=0;i-8)) return -1; #ifndef FIXED_POINT /* Another check in case of -ffast-math */ if (celt_isnan(x)) return 0; #endif if (x<0) { x=-x; sign=-1; } i = (int)floor(.5f+25*x); x -= .04f*i; y = tansig_table[i]; dy = 1-y*y; y = y + x*dy*(1 - y*x); return sign*y; } static OPUS_INLINE float sigmoid_approx(float x) { return .5f + .5f*tansig_approx(.5f*x); } static void softmax(float *y, const float *x, int N) { int i; for (i=0;inb_inputs; N = layer->nb_neurons; stride = N; celt_assert(input != output); for (i=0;ibias[i]; gemm_accum(output, layer->input_weights, N, M, stride, input); compute_activation(output, output, N, layer->activation); } void compute_mdense(const MDenseLayer *layer, float *output, const float *input) { int i, c; int N, M, C; int stride; float tmp[MAX_MDENSE_TMP]; celt_assert(input != output); M = layer->nb_inputs; N = layer->nb_neurons; C = layer->nb_channels; celt_assert(N*C <= MAX_MDENSE_TMP); stride = N*C; for (i=0;ibias[i]; gemm_accum(tmp, layer->input_weights, N*C, M, stride, input); compute_activation(tmp, tmp, N*C, ACTIVATION_TANH); for (i=0;ifactor[c*N + i]; } compute_activation(output, output, N, layer->activation); } void compute_gru(const GRULayer *gru, float *state, const float *input) { int i; int N, M; int stride; float tmp[MAX_RNN_NEURONS]; float z[MAX_RNN_NEURONS]; float r[MAX_RNN_NEURONS]; float h[MAX_RNN_NEURONS]; celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS); celt_assert(input != state); M = gru->nb_inputs; N = gru->nb_neurons; stride = 3*N; /* Compute update gate. */ for (i=0;ibias[i]; if (gru->reset_after) { for (i=0;ibias[3*N + i]; } gemm_accum(z, gru->input_weights, N, M, stride, input); gemm_accum(z, gru->recurrent_weights, N, N, stride, state); compute_activation(z, z, N, ACTIVATION_SIGMOID); /* Compute reset gate. */ for (i=0;ibias[N + i]; if (gru->reset_after) { for (i=0;ibias[4*N + i]; } gemm_accum(r, &gru->input_weights[N], N, M, stride, input); gemm_accum(r, &gru->recurrent_weights[N], N, N, stride, state); compute_activation(r, r, N, ACTIVATION_SIGMOID); /* Compute output. */ for (i=0;ibias[2*N + i]; if (gru->reset_after) { for (i=0;ibias[5*N + i]; gemm_accum(tmp, &gru->recurrent_weights[2*N], N, N, stride, state); for (i=0;iinput_weights[2*N], N, M, stride, input); } else { for (i=0;iinput_weights[2*N], N, M, stride, input); gemm_accum(h, &gru->recurrent_weights[2*N], N, N, stride, tmp); } compute_activation(h, h, N, gru->activation); for (i=0;inb_inputs; N = gru->nb_neurons; z = zrh; r = &zrh[N]; h = &zrh[2*N]; celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS); celt_assert(input != state); celt_assert(gru->reset_after); stride = 3*N; /* Compute update gate. */ for (i=0;i<3*N;i++) zrh[i] = gru->bias[i]; gemm_accum(zrh, gru->input_weights, 3*N, M, stride, input); for (i=0;i<3*N;i++) recur[i] = gru->bias[3*N + i]; gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state); for (i=0;i<2*N;i++) zrh[i] += recur[i]; compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID); for (i=0;iactivation); for (i=0;inb_neurons; z = zrh; r = &zrh[N]; h = &zrh[2*N]; celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS); celt_assert(input != state); celt_assert(gru->reset_after); stride = 3*N; RNN_COPY(zrh, input, 3*N); for (i=0;i<3*N;i++) recur[i] = gru->bias[3*N + i]; gemm_accum(recur, gru->recurrent_weights, 3*N, N, stride, state); for (i=0;i<2*N;i++) zrh[i] += recur[i]; compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID); for (i=0;iactivation); for (i=0;inb_neurons; z = zrh; r = &zrh[N]; h = &zrh[2*N]; celt_assert(gru->nb_neurons <= MAX_RNN_NEURONS); celt_assert(input != state); celt_assert(gru->reset_after); RNN_COPY(zrh, input, 3*N); for (i=0;i<3*N;i++) recur[i] = gru->bias[3*N + i]; for (k=0;k<3;k++) { for (i=0;idiag_weights[k*N + i]*state[i]; } sparse_gemm_accum16(recur, gru->recurrent_weights, 3*N, gru->idx, state); for (i=0;i<2*N;i++) zrh[i] += recur[i]; compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID); for (i=0;iactivation); for (i=0;inb_inputs*layer->kernel_size <= MAX_CONV_INPUTS); RNN_COPY(tmp, mem, layer->nb_inputs*(layer->kernel_size-1)); RNN_COPY(&tmp[layer->nb_inputs*(layer->kernel_size-1)], input, layer->nb_inputs); M = layer->nb_inputs*layer->kernel_size; N = layer->nb_neurons; stride = N; for (i=0;ibias[i]; gemm_accum(output, layer->input_weights, N, M, stride, tmp); compute_activation(output, output, N, layer->activation); RNN_COPY(mem, &tmp[layer->nb_inputs], layer->nb_inputs*(layer->kernel_size-1)); } void compute_embedding(const EmbeddingLayer *layer, float *output, int input) { int i; celt_assert(input >= 0); celt_assert(input < layer->nb_inputs); /*if (layer->dim == 64) printf("%d\n", input);*/ for (i=0;idim;i++) { output[i] = layer->embedding_weights[input*layer->dim + i]; } } void accum_embedding(const EmbeddingLayer *layer, float *output, int input) { int i; celt_assert(input >= 0); celt_assert(input < layer->nb_inputs); /*if (layer->dim == 64) printf("%d\n", input);*/ for (i=0;idim;i++) { output[i] += layer->embedding_weights[input*layer->dim + i]; } } int sample_from_pdf(const float *pdf, int N, float exp_boost, float pdf_floor) { int i; float sum, norm; float r; float tmp[DUAL_FC_OUT_SIZE]; celt_assert(N <= DUAL_FC_OUT_SIZE); sum = 0; #ifdef SOFTMAX_HACK for (i=0;i