#!/usr/bin/python3 import math from keras.models import Model from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Bidirectional, MaxPooling1D, Activation from keras import backend as K from keras.initializers import Initializer from mdense import MDense import numpy as np import h5py import sys rnn_units=512 pcm_bits = 8 embed_size = 128 pcm_levels = 2**pcm_bits nb_used_features = 38 class PCMInit(Initializer): def __init__(self, gain=.1, seed=None): self.gain = gain self.seed = seed def __call__(self, shape, dtype=None): num_rows = 1 for dim in shape[:-1]: num_rows *= dim num_cols = shape[-1] flat_shape = (num_rows, num_cols) if self.seed is not None: np.random.seed(self.seed) a = np.random.uniform(-1.7321, 1.7321, flat_shape) #a[:,0] = math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows #a[:,1] = .5*a[:,0]*a[:,0]*a[:,0] a = a + np.reshape(math.sqrt(12)*np.arange(-.5*num_rows+.5,.5*num_rows-.4)/num_rows, (num_rows, 1)) return self.gain * a def get_config(self): return { 'gain': self.gain, 'seed': self.seed } def new_wavernn_model(): pcm = Input(shape=(None, 2)) exc = Input(shape=(None, 1)) pitch = Input(shape=(None, 1)) feat = Input(shape=(None, nb_used_features)) dec_feat = Input(shape=(None, 32)) dec_state = Input(shape=(rnn_units,)) conv1 = Conv1D(16, 7, padding='causal', activation='tanh') pconv1 = Conv1D(16, 5, padding='same', activation='tanh') pconv2 = Conv1D(16, 5, padding='same', activation='tanh') fconv1 = Conv1D(128, 3, padding='same', activation='tanh') fconv2 = Conv1D(32, 3, padding='same', activation='tanh') if False: cpcm = conv1(pcm) cpitch = pconv2(pconv1(pitch)) else: cpcm = pcm cpitch = pitch embed = Embedding(256, embed_size, embeddings_initializer=PCMInit()) cpcm = Reshape((-1, embed_size*2))(embed(pcm)) embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit()) cexc = Reshape((-1, embed_size))(embed2(exc)) cfeat = fconv2(fconv1(feat)) rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True) rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)]) md = MDense(pcm_levels, activation='softmax') gru_out, state = rnn(rnn_in) ulaw_prob = md(gru_out) model = Model([pcm, exc, feat], ulaw_prob) encoder = Model(feat, cfeat) dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat]) dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state) dec_ulaw_prob = md(dec_gru_out) decoder = Model([pcm, exc, dec_feat, dec_state], [dec_ulaw_prob, state]) return model, encoder, decoder