#!/usr/bin/python3 import wavenet import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 set_session(tf.Session(config=config)) nb_epochs = 40 batch_size = 64 #model = wavenet.new_wavenet_model(fftnet=True) model, enc, dec = lpcnet.new_wavernn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() pcmfile = sys.argv[1] feature_file = sys.argv[2] frame_size = 160 nb_features = 55 nb_used_features = lpcnet.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size data = np.fromfile(pcmfile, dtype='int16') data = lin2ulaw(data) nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') data = data[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] in_data = np.concatenate([data[0:1], data[:-1]]); features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = in_data.astype('uint8') out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1)) out_data = out_data.astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :] periods = (50*features[:,:,36:37]+100).astype('int16') in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1)) out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1)) model.load_weights('wavenet4f2_30.h5') order = 16 pcm = 0.*out_data fexc = np.zeros((1, 1, 2), dtype='float32') iexc = np.zeros((1, 1, 1), dtype='int16') state = np.zeros((1, lpcnet.rnn_units), dtype='float32') for c in range(1, nb_frames): cfeat = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) for fr in range(1, feature_chunk_size): f = c*feature_chunk_size + fr a = features[c, fr, nb_features-order:] #print(a) gain = 1.; period = int(50*features[c, fr, 36]+100) period = period - 4 for i in range(frame_size): #fexc[0, 0, 0] = iexc + 128 pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0]) fexc[0, 0, 1] = lin2ulaw(pred) p, state = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state]) #p = p*p #p = p/(1e-18 + np.sum(p)) p = np.maximum(p-0.001, 0).astype('float64') p = p/(1e-8 + np.sum(p)) iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1)) pcm[f*frame_size + i, 0] = pred + ulaw2lin(iexc[0, 0, 0]) fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0]) print(iexc[0, 0, 0], ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)