/* Copyright (c) 2018 Mozilla 2008-2011 Octasic Inc. 2012-2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "opus_types.h" #include "arch.h" #include "nnet.h" #include "dred_rdovae_constants.h" #include "plc_data.h" #include "fargan.h" #include "os_support.h" #include "vec.h" #ifdef NO_OPTIMIZATIONS #if defined(_MSC_VER) #pragma message ("Compiling without any vectorization. This code will be very slow") #else #warning Compiling without any vectorization. This code will be very slow #endif #endif #define SOFTMAX_HACK void compute_generic_dense(const LinearLayer *layer, float *output, const float *input, int activation, int arch) { compute_linear(layer, output, input, arch); compute_activation(output, output, layer->nb_outputs, activation, arch); } #define MAX_RNN_NEURONS_ALL IMAX(IMAX(FARGAN_MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS), DRED_MAX_RNN_NEURONS) void compute_generic_gru(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in, int arch) { int i; int N; float zrh[3*MAX_RNN_NEURONS_ALL]; float recur[3*MAX_RNN_NEURONS_ALL]; float *z; float *r; float *h; celt_assert(3*recurrent_weights->nb_inputs == recurrent_weights->nb_outputs); celt_assert(input_weights->nb_outputs == recurrent_weights->nb_outputs); N = recurrent_weights->nb_inputs; z = zrh; r = &zrh[N]; h = &zrh[2*N]; celt_assert(recurrent_weights->nb_outputs <= 3*MAX_RNN_NEURONS_ALL); celt_assert(in != state); compute_linear(input_weights, zrh, in, arch); compute_linear(recurrent_weights, recur, state, arch); for (i=0;i<2*N;i++) zrh[i] += recur[i]; compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID, arch); for (i=0;inb_inputs == layer->nb_outputs); compute_linear(layer, act2, input, arch); compute_activation(act2, act2, layer->nb_outputs, ACTIVATION_SIGMOID, arch); if (input == output) { /* Give a vectorization hint to the compiler for the in-place case. */ for (i=0;inb_outputs;i++) output[i] = output[i]*act2[i]; } else { for (i=0;inb_outputs;i++) output[i] = input[i]*act2[i]; } } void _lpcnet_compute_dense(const DenseLayer *layer, float *output, const float *input, int arch) { LinearLayer matrix; celt_assert(input != output); matrix.bias = layer->bias; matrix.subias = NULL; matrix.float_weights = layer->input_weights; matrix.weights = NULL; matrix.weights_idx = NULL; matrix.diag = NULL; matrix.nb_inputs = layer->nb_inputs; matrix.nb_outputs = layer->nb_neurons; matrix.scale = NULL; compute_linear(&matrix, output, input, arch); compute_activation(output, output, layer->nb_neurons, layer->activation, arch); } #ifdef USE_SU_BIAS #define bias_type subias #else #define bias_type bias #endif #define MAX_IDX_SIZE 8192 void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input, int arch) { LinearLayer in_matrix, rec_matrix; int i, M, N; float bias[3*MAX_RNN_NEURONS_ALL]; float scale[3*MAX_RNN_NEURONS_ALL]; M = gru->nb_inputs; N = gru->nb_neurons; in_matrix.bias = bias; in_matrix.diag = NULL; in_matrix.nb_inputs = M; in_matrix.nb_outputs = 3*N; in_matrix.subias = bias; #ifdef DISABLE_DOT_PROD for (i=0;i<3*N;i++) bias[i] = gru->bias[i] + gru_b_condition[i]; in_matrix.scale = NULL; in_matrix.float_weights = gru->input_weights; in_matrix.weights = NULL; #else for (i=0;i<3*N;i++) bias[i] = gru->bias_type[i] + gru_b_condition[i]; for (i=0;i<3*N;i++) scale[i] = SCALE_1; in_matrix.scale = scale; in_matrix.weights = gru->input_weights; in_matrix.float_weights = NULL; #endif in_matrix.weights_idx = gru->input_weights_idx; rec_matrix.bias = &gru->bias[3*N]; rec_matrix.diag = NULL; rec_matrix.nb_inputs = N; rec_matrix.nb_outputs = 3*N; rec_matrix.scale = scale; rec_matrix.subias = &gru->subias[3*N]; #ifdef DISABLE_DOT_PROD rec_matrix.scale = NULL; rec_matrix.float_weights = gru->recurrent_weights; rec_matrix.weights = NULL; #else rec_matrix.scale = scale; rec_matrix.weights = gru->recurrent_weights; rec_matrix.float_weights = NULL; #endif rec_matrix.weights_idx = NULL; compute_generic_gru(&in_matrix, &rec_matrix, state, input, arch); } #define MAX_CONV_INPUTS_ALL DRED_MAX_CONV_INPUTS void compute_generic_conv1d(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int activation, int arch) { float tmp[MAX_CONV_INPUTS_ALL]; celt_assert(input != output); celt_assert(layer->nb_inputs <= MAX_CONV_INPUTS_ALL); OPUS_COPY(tmp, mem, layer->nb_inputs-input_size); OPUS_COPY(&tmp[layer->nb_inputs-input_size], input, input_size); compute_linear(layer, output, tmp, arch); compute_activation(output, output, layer->nb_outputs, activation, arch); OPUS_COPY(mem, &tmp[input_size], layer->nb_inputs-input_size); } void compute_generic_conv1d_dilation(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int dilation, int activation, int arch) { float tmp[MAX_CONV_INPUTS_ALL]; int ksize = layer->nb_inputs/input_size; int i; celt_assert(input != output); celt_assert(layer->nb_inputs <= MAX_CONV_INPUTS_ALL); if (dilation==1) OPUS_COPY(tmp, mem, layer->nb_inputs-input_size); else for (i=0;inb_inputs-input_size], input, input_size); compute_linear(layer, output, tmp, arch); compute_activation(output, output, layer->nb_outputs, activation, arch); if (dilation==1) OPUS_COPY(mem, &tmp[input_size], layer->nb_inputs-input_size); else { OPUS_COPY(mem, &mem[input_size], input_size*dilation*(ksize-1)-input_size); OPUS_COPY(&mem[input_size*dilation*(ksize-1)-input_size], input, input_size); } }