#!/usr/bin/python3 import wavenet import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.44 set_session(tf.Session(config=config)) nb_epochs = 40 batch_size = 64 #model = wavenet.new_wavenet_model(fftnet=True) model, _, _ = lpcnet.new_wavernn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.summary() exc_file = sys.argv[1] feature_file = sys.argv[2] pred_file = sys.argv[3] pcm_file = sys.argv[4] frame_size = 160 nb_features = 55 nb_used_features = wavenet.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size data = np.fromfile(pcm_file, dtype='int16') data = np.minimum(127, lin2ulaw(data/32768.)) nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') data = data[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] in_data = np.concatenate([data[0:1], data[:-1]]); noise = np.concatenate([np.zeros((len(data)//3)), np.random.randint(-2, 2, len(data)//3), np.random.randint(-1, 1, len(data)//3)]) in_data = in_data + noise in_data = np.maximum(-127, np.minimum(127, in_data)) features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) pred = np.fromfile(pred_file, dtype='int16') pred = pred[:nb_frames*pcm_chunk_size] pred_in = 32768.*ulaw2lin(in_data) for i in range(2, nb_frames*feature_chunk_size): pred[i*frame_size:(i+1)*frame_size] = 0 if i % 100000 == 0: print(i) for k in range(16): pred[i*frame_size:(i+1)*frame_size] = pred[i*frame_size:(i+1)*frame_size] - \ pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k] pred = np.minimum(127, lin2ulaw(pred/32768.)) #pred = pred + np.random.randint(-1, 1, len(data)) pitch = 1.*data pitch[:320] = 0 for i in range(2, nb_frames*feature_chunk_size): period = int(50*features[i,36]+100) period = period - 4 pitch[i*frame_size:(i+1)*frame_size] = data[i*frame_size-period:(i+1)*frame_size-period] in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1)) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = (in_data.astype('int16')+128).astype('uint8') out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1)) out_data = (out_data.astype('int16')+128).astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1)) pred = (pred.astype('int16')+128).astype('uint8') in_data = np.concatenate([in_data, pred], axis=-1) #in_data = np.concatenate([in_data, in_pitch], axis=-1) #with h5py.File('in_data.h5', 'w') as f: # f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :]) checkpoint = ModelCheckpoint('wavenet3h21_{epoch:02d}.h5') #model.load_weights('wavernn1c_01.h5') model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.fit([in_data, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])