#!/usr/bin/python3 import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from keras.layers import Layer, GRU, CuDNNGRU, Dense, Conv1D, Embedding from ulaw import ulaw2lin, lin2ulaw from mdense import MDense import keras.backend as K import h5py import re max_rnn_neurons = 1 max_conv_inputs = 1 def printVector(f, vector, name): v = np.reshape(vector, (-1)); #print('static const float ', name, '[', len(v), '] = \n', file=f) f.write('static const float {}[{}] = {{\n '.format(name, len(v))) for i in range(0, len(v)): f.write('{}'.format(v[i])) if (i!=len(v)-1): f.write(',') else: break; if (i%8==7): f.write("\n ") else: f.write(" ") #print(v, file=f) f.write('\n};\n\n') return; def dump_layer_ignore(self, f, hf): print("ignoring layer " + self.name + " of type " + self.__class__.__name__) return False Layer.dump_layer = dump_layer_ignore def dump_gru_layer(self, f, hf): global max_rnn_neurons name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[1], name + '_recurrent_weights') printVector(f, weights[-1], name + '_bias') if hasattr(self, 'activation'): activation = self.activation.__name__.upper() else: activation = 'TANH' if hasattr(self, 'reset_after') and not self.reset_after: reset_after = 0 else: reset_after = 1 neurons = weights[0].shape[1]//3 max_rnn_neurons = max(max_rnn_neurons, neurons) f.write('const GRULayer {} = {{\n {}_bias,\n {}_weights,\n {}_recurrent_weights,\n {}, {}, ACTIVATION_{}, {}\n}};\n\n' .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1]//3, activation, reset_after)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('#define {}_STATE_SIZE {}\n'.format(name.upper(), weights[0].shape[1]//3)) hf.write('extern const GRULayer {};\n\n'.format(name)); return True CuDNNGRU.dump_layer = dump_gru_layer GRU.dump_layer = dump_gru_layer def dump_dense_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[-1], name + '_bias') activation = self.activation.__name__.upper() f.write('const DenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, ACTIVATION_{}\n}};\n\n' .format(name, name, name, weights[0].shape[0], weights[0].shape[1], activation)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1])) hf.write('extern const DenseLayer {};\n\n'.format(name)); return False Dense.dump_layer = dump_dense_layer def dump_mdense_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[1], name + '_bias') printVector(f, weights[1], name + '_factor') activation = self.activation.__name__.upper() f.write('const MDenseLayer {} = {{\n {}_bias,\n {}_weights,\n {}_factor,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n' .format(name, name, name, name, weights[0].shape[0], weights[0].shape[1], weights[0].shape[2], activation)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[0])) hf.write('extern const MDenseLayer {};\n\n'.format(name)); return False MDense.dump_layer = dump_mdense_layer def dump_conv1d_layer(self, f, hf): global max_conv_inputs name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') printVector(f, weights[-1], name + '_bias') activation = self.activation.__name__.upper() max_conv_inputs = max(max_conv_inputs, weights[0].shape[1]*weights[0].shape[0]) f.write('const Conv1DLayer {} = {{\n {}_bias,\n {}_weights,\n {}, {}, {}, ACTIVATION_{}\n}};\n\n' .format(name, name, name, weights[0].shape[1], weights[0].shape[0], weights[0].shape[2], activation)) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[2])) hf.write('#define {}_STATE_SIZE ({}*{})\n'.format(name.upper(), weights[0].shape[1], (weights[0].shape[0]-1))) hf.write('extern const Conv1DLayer {};\n\n'.format(name)); return True Conv1D.dump_layer = dump_conv1d_layer def dump_embedding_layer(self, f, hf): name = self.name print("printing layer " + name + " of type " + self.__class__.__name__) weights = self.get_weights() printVector(f, weights[0], name + '_weights') f.write('const EmbeddingLayer {} = {{\n {}_weights,\n {}, {}\n}};\n\n' .format(name, name, weights[0].shape[0], weights[0].shape[1])) hf.write('#define {}_OUT_SIZE {}\n'.format(name.upper(), weights[0].shape[1])) hf.write('extern const EmbeddingLayer {};\n\n'.format(name)); return False Embedding.dump_layer = dump_embedding_layer model, _, _ = lpcnet.new_lpcnet_model(rnn_units1=384, use_gpu=False) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() model.load_weights(sys.argv[1]) f = open(sys.argv[2], 'w') hf = open(sys.argv[3], 'w') f.write('/*This file is automatically generated from a Keras model*/\n\n') f.write('#ifdef HAVE_CONFIG_H\n#include "config.h"\n#endif\n\n#include "nnet.h"\n#include "foo.h"\n\n') hf.write('/*This file is automatically generated from a Keras model*/\n\n') hf.write('#ifndef RNN_DATA_H\n#define RNN_DATA_H\n\n#include "{}"\n\n'.format(sys.argv[3])) layer_list = [] for i, layer in enumerate(model.layers): if layer.dump_layer(f, hf): layer_list.append(layer.name) hf.write('#define MAX_RNN_NEURONS {}\n\n'.format(max_rnn_neurons)) hf.write('#define MAX_CONV_INPUTS {}\n\n'.format(max_conv_inputs)) hf.write('struct RNNState {\n') for i, name in enumerate(layer_list): hf.write(' float {}_state[{}_STATE_SIZE];\n'.format(name, name.upper())) hf.write('};\n') hf.write('\n\n#endif\n') f.close() hf.close()