#!/usr/bin/python3 # train_wavenet_audio.py # Jean-Marc Valin # # Train a CELPNet model (note not a Wavenet model) import wavenet import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() # use this option to reserve GPU memory, e.g. for running more than # one thing at a time. Best to disable for GPUs with small memory config.gpu_options.per_process_gpu_memory_fraction = 0.44 set_session(tf.Session(config=config)) nb_epochs = 40 # Try reducing batch_size if you run out of memory on your GPU batch_size = 64 # Note we are creating a CELPNet model #model = wavenet.new_wavenet_model(fftnet=True) model, _, _ = lpcnet.new_wavernn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.summary() exc_file = sys.argv[1] # not used at present feature_file = sys.argv[2] pred_file = sys.argv[3] # LPC predictor samples. Not used at present, see below pcm_file = sys.argv[4] # 16 bit unsigned short PCM samples frame_size = 160 nb_features = 55 nb_used_features = lpcnet.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size # u for unquantised, load 16 bit PCM samples and convert to mu-law udata = np.fromfile(pcm_file, dtype='int16') data = lin2ulaw(udata) nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') # limit to discrete number of frames data = data[:nb_frames*pcm_chunk_size] udata = udata[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] # Noise injection: the idea is that the real system is going to be # predicting samples based on previously predicted samples rather than # from the original. Since the previously predicted samples aren't # expected to be so good, I add noise to the training data. Exactly # how the noise is added makes a huge difference in_data = np.concatenate([data[0:1], data[:-1]]); noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)]) #noise = np.round(np.concatenate([np.zeros((len(data)*1//5)), np.random.laplace(0, 1.2, len(data)*1//5), np.random.laplace(0, .77, len(data)*1//5), np.random.laplace(0, .33, len(data)*1//5), np.random.randint(-1, 1, len(data)*1//5)])) in_data = in_data + noise in_data = np.clip(in_data, 0, 255) features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) # Note: the LPC predictor output is now calculated by the loop below, this code was # for an ealier version that implemented the prediction filter in C upred = np.fromfile(pred_file, dtype='int16') upred = upred[:nb_frames*pcm_chunk_size] # Use 16th order LPC to generate LPC prediction output upred[] and (in # mu-law form) pred[] pred_in = ulaw2lin(in_data) for i in range(2, nb_frames*feature_chunk_size): upred[i*frame_size:(i+1)*frame_size] = 0 for k in range(16): upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \ pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k] pred = lin2ulaw(upred) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = in_data.astype('uint8') # LPC residual, which is the difference between the input speech and # the predictor output, with a slight time shift this is also the # ideal excitation in_exc out_data = lin2ulaw(udata-upred) in_exc = np.concatenate([out_data[0:1], out_data[:-1]]); out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1)) out_data = out_data.astype('uint8') in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1)) in_exc = in_exc.astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] features[:,:,18:36] = 0 pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1)) pred = pred.astype('uint8') periods = (50*features[:,:,36:37]+100).astype('int16') in_data = np.concatenate([in_data, pred], axis=-1) # dump models to disk as we go checkpoint = ModelCheckpoint('lpcnet9_384_10_G16_{epoch:02d}.h5') #model.load_weights('wavenet4f2_30.h5') model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=120, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, 0.1)])