#!/usr/bin/python3 import wavenet import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 set_session(tf.Session(config=config)) nb_epochs = 40 batch_size = 64 #model = wavenet.new_wavenet_model(fftnet=True) model, enc, dec = lpcnet.new_wavernn_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() pcmfile = sys.argv[1] feature_file = sys.argv[2] frame_size = 160 nb_features = 55 nb_used_features = wavenet.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size data = np.fromfile(pcmfile, dtype='int16') data = np.minimum(127, lin2ulaw(data/32768.)) nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') data = data[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] in_data = np.concatenate([data[0:1], data[:-1]]); features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) pitch = 1.*data pitch[:320] = 0 for i in range(2, nb_frames*feature_chunk_size): period = int(50*features[i,36]+100) period = period - 4 pitch[i*frame_size:(i+1)*frame_size] = data[i*frame_size-period:(i+1)*frame_size-period] in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1)) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = (in_data.astype('int16')+128).astype('uint8') out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1)) out_data = (out_data.astype('int16')+128).astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1)) out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1)) model.load_weights('wavenet3h12_30.h5') order = 16 pcm = 0.*out_data exc = out_data-0 pitch = np.zeros((1, 1, 1), dtype='float32') fexc = np.zeros((1, 1, 1), dtype='float32') iexc = np.zeros((1, 1, 1), dtype='int16') state = np.zeros((1, lpcnet.rnn_units), dtype='float32') for c in range(1, nb_frames): cfeat = enc.predict(features[c:c+1, :, :nb_used_features]) for fr in range(1, feature_chunk_size): f = c*feature_chunk_size + fr a = features[c, fr, nb_used_features:] #print(a) gain = 1.; period = int(50*features[c, fr, 36]+100) period = period - 4 for i in range(frame_size): pitch[0, 0, 0] = exc[f*frame_size + i - period, 0] fexc[0, 0, 0] = iexc + 128 #fexc[0, 0, 0] = in_data[f*frame_size + i, 0] #print(cfeat.shape) p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state]) p = np.maximum(p-0.0003, 0) p = p/(1e-5 + np.sum(p)) #print(np.sum(p)) iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128 exc[f*frame_size + i] = iexc[0, 0, 0]/16. #out_data[f*frame_size + i, 0] = iexc[0, 0, 0] pcm[f*frame_size + i, 0] = 32768*ulaw2lin(iexc[0, 0, 0]*1.0) print(iexc[0, 0, 0], out_data[f*frame_size + i, 0], pcm[f*frame_size + i, 0])