/* Copyright (c) 2007-2008 CSIRO Copyright (c) 2007-2009 Xiph.Org Foundation Copyright (c) 2008-2009 Gregory Maxwell Written by Jean-Marc Valin and Gregory Maxwell */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the Xiph.org Foundation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include "bands.h" #include "modes.h" #include "vq.h" #include "cwrs.h" #include "stack_alloc.h" #include "os_support.h" #include "mathops.h" #include "rate.h" #ifdef FIXED_POINT /* Compute the amplitude (sqrt energy) in each of the bands */ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->eBands[m->nbEBands+1]; for (c=0;cnbEBands;i++) { int j; celt_word32 maxval=0; celt_word32 sum = 0; j=M*eBands[i]; do { maxval = MAX32(maxval, X[j+c*N]); maxval = MAX32(maxval, -X[j+c*N]); } while (++j 0) { int shift = celt_ilog2(maxval)-10; j=M*eBands[i]; do { sum = MAC16_16(sum, EXTRACT16(VSHR32(X[j+c*N],shift)), EXTRACT16(VSHR32(X[j+c*N],shift))); } while (++jnbEBands] = EPSILON+VSHR32(EXTEND32(celt_sqrt(sum)),-shift); } else { bank[i+c*m->nbEBands] = EPSILON; } /*printf ("%f ", bank[i+c*m->nbEBands]);*/ } } /*printf ("\n");*/ } /* Normalise each band such that the energy is one. */ void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->eBands[m->nbEBands+1]; for (c=0;cnbEBands])-13; E = VSHR32(bank[i+c*m->nbEBands], shift); g = EXTRACT16(celt_rcp(SHL32(E,3))); j=M*eBands[i]; do { X[j+c*N] = MULT16_16_Q15(VSHR32(freq[j+c*N],shift-1),g); } while (++jnbEBands); } } #else /* FIXED_POINT */ /* Compute the amplitude (sqrt energy) in each of the bands */ void compute_band_energies(const CELTMode *m, const celt_sig *X, celt_ener *bank, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->eBands[m->nbEBands+1]; for (c=0;cnbEBands;i++) { int j; celt_word32 sum = 1e-10; for (j=M*eBands[i];jnbEBands] = sqrt(sum); /*printf ("%f ", bank[i+c*m->nbEBands]);*/ } } /*printf ("\n");*/ } /* Normalise each band such that the energy is one. */ void normalise_bands(const CELTMode *m, const celt_sig * restrict freq, celt_norm * restrict X, const celt_ener *bank, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->eBands[m->nbEBands+1]; for (c=0;cnbEBands;i++) { int j; celt_word16 g = 1.f/(1e-10f+bank[i+c*m->nbEBands]); for (j=M*eBands[i];jeBands; const int C = CHANNELS(_C); for (c=0;cnbEBands+1], Q15ONE, M*eBands[i+1]-M*eBands[i], 1); } while (++inbEBands); } } /* De-normalise the energy to produce the synthesis from the unit-energy bands */ void denormalise_bands(const CELTMode *m, const celt_norm * restrict X, celt_sig * restrict freq, const celt_ener *bank, int _C, int M) { int i, c, N; const celt_int16 *eBands = m->eBands; const int C = CHANNELS(_C); N = M*m->eBands[m->nbEBands+1]; if (C>2) celt_fatal("denormalise_bands() not implemented for >2 channels"); for (c=0;cnbEBands;i++) { int j, end; celt_word32 g = SHR32(bank[i+c*m->nbEBands],1); j=M*eBands[i]; end = M*eBands[i+1]; do { *f++ = SHL32(MULT16_32_Q15(*x, g),2); x++; } while (++jnbEBands];inbEBands+1];i++) *f++ = 0; } } int compute_pitch_gain(const CELTMode *m, const celt_sig *X, const celt_sig *P, int norm_rate, int *gain_id, int _C, celt_word16 *gain_prod, int M) { int j, c; celt_word16 g; celt_word16 delta; const int C = CHANNELS(_C); celt_word32 Sxy=0, Sxx=0, Syy=0; int len = M*m->pitchEnd; int N = M*m->eBands[m->nbEBands+1]; #ifdef FIXED_POINT int shift = 0; celt_word32 maxabs=0; for (c=0;cQCONST32(2.f, 13)) { *gain_id=9; *gain_prod = QCONST32(2.f, 13); } if (*gain_id < 0) { *gain_id = 0; return 0; } else { if (*gain_id > 15) *gain_id = 15; return 1; } } void apply_pitch(const CELTMode *m, celt_sig *X, const celt_sig *P, int gain_id, int pred, int _C, int M) { int j, c, N; celt_word16 gain; celt_word16 delta; const int C = CHANNELS(_C); int len = M*m->pitchEnd; N = M*m->eBands[m->nbEBands+1]; gain = ADD16(QCONST16(.5f,14), MULT16_16_16(QCONST16(.05f,14),gain_id)); delta = PDIV32_16(gain, len); if (pred) gain = -gain; else delta = -delta; for (c=0;ceBands; int j; celt_word16 a1, a2; if (stereo_mode==0) { /* Do mid-side when not doing intensity stereo */ a1 = QCONST16(.70711f,14); a2 = dir*QCONST16(.70711f,14); } else { celt_word16 left, right; celt_word16 norm; #ifdef FIXED_POINT int shift = celt_zlog2(MAX32(bank[i], bank[i+m->nbEBands]))-13; #endif left = VSHR32(bank[i],shift); right = VSHR32(bank[i+m->nbEBands],shift); norm = EPSILON + celt_sqrt(EPSILON+MULT16_16(left,left)+MULT16_16(right,right)); a1 = DIV32_16(SHL32(EXTEND32(left),14),norm); a2 = dir*DIV32_16(SHL32(EXTEND32(right),14),norm); } for (j=0;jeBands; N0 = M*m->eBands[m->nbEBands+1]; for (c=0;cnbEBands;i++) { int j, N; int max_i=0; celt_word16 max_val=EPSILON; celt_word32 floor_ener=EPSILON; celt_norm * restrict x = X+M*eBands[i]+c*N0; N = M*eBands[i+1]-M*eBands[i]; for (j=0;jmax_val) { max_val = ABS16(x[j]); max_i = j; } } #if 0 for (j=0;j2) floor_ener += x[j]*x[j]; } #else floor_ener = QCONST32(1.,28)-MULT16_16(max_val,max_val); if (max_i < N-1) floor_ener -= MULT16_16(x[(max_i+1)], x[(max_i+1)]); if (max_i < N-2) floor_ener -= MULT16_16(x[(max_i+2)], x[(max_i+2)]); if (max_i > 0) floor_ener -= MULT16_16(x[(max_i-1)], x[(max_i-1)]); if (max_i > 1) floor_ener -= MULT16_16(x[(max_i-2)], x[(max_i-2)]); floor_ener = MAX32(floor_ener, EPSILON); #endif if (N>7) { celt_word16 r; celt_word16 den = celt_sqrt(floor_ener); den = MAX32(QCONST16(.02f, 15), den); r = DIV32_16(SHL32(EXTEND32(max_val),8),den); ratio = ADD32(ratio, EXTEND32(r)); NR++; } } } if (NR>0) ratio = DIV32_16(ratio, NR); ratio = ADD32(HALF32(ratio), HALF32(*average)); if (!*last_decision) { *last_decision = (ratio < QCONST16(1.8f,8)); } else { *last_decision = (ratio < QCONST16(3.f,8)); } *average = EXTRACT16(ratio); return *last_decision; } static void quant_band(int encode, const CELTMode *m, int i, celt_norm *X, celt_norm *Y, int N, int b, int spread, celt_norm *lowband, int resynth, ec_enc *ec, celt_int32 *remaining_bits, int LM, celt_norm *lowband_out, const celt_ener *bandE) { int q; int curr_bits; int stereo, split; int imid=0, iside=0; int N0=N; split = stereo = Y != NULL; if (!stereo && LM>0 && !fits_in32(N, get_pulses(bits2pulses(m, m->bits[LM][i], N, b)))) { N >>= 1; Y = X+N; split = 1; LM -= 1; } if (split) { int qb; int itheta; int mbits, sbits, delta; int qalloc; celt_word16 mid, side; if (N>1) qb = (b-2*(N-1)*(QTHETA_OFFSET-m->logN[i]-(LM< (b>>BITRES)-1) qb = (b>>BITRES)-1; if (qb<0) qb = 0; if (qb>14) qb = 14; if (encode) { if (stereo) stereo_band_mix(m, X, Y, bandE, qb==0, i, 1, 1<>1)+1)*((1<>1)+1); if (encode) itheta = (itheta+(1<>1))>>shift; if (stereo || qb>9) { if (encode) ec_enc_uint(ec, itheta, (1<>1)) fs++; else fs--; j++; } ec_encode(ec, fl, fl+fs, ft); } else { int fl=0; int j, fm; fm = ec_decode((ec_dec*)ec, ft); j=0; while (1) { if (fm < fl+fs) break; fl+=fs; if (j<(1<>1)) fs++; else fs--; j++; } itheta = j; ec_dec_update((ec_dec*)ec, fl, fl+fs, ft); } qalloc = log2_frac(ft,BITRES) - log2_frac(fs,BITRES) + 1; } itheta <<= shift; } if (itheta == 0) { imid = 32767; iside = 0; delta = -10000; } else if (itheta == 16384) { imid = 0; iside = 32767; delta = 10000; } else { imid = bitexact_cos(itheta); iside = bitexact_cos(16384-itheta); delta = (N-1)*(log2_frac(iside,BITRES+2)-log2_frac(imid,BITRES+2))>>2; } #if 1 if (N==2 && stereo) { int c, c2; int sign=1; celt_norm v[2], w[2]; celt_norm *x2, *y2; mbits = b-qalloc; sbits = 0; if (itheta != 0 && itheta != 16384) sbits = 1< 8192 ? 1 : 0; *remaining_bits -= qalloc+sbits; x2 = X; y2 = Y; if (encode) { c2 = 1-c; if (c==0) { v[0] = x2[0]; v[1] = x2[1]; w[0] = y2[0]; w[1] = y2[1]; } else { v[0] = y2[0]; v[1] = y2[1]; w[0] = x2[0]; w[1] = x2[1]; } } quant_band(encode, m, i, v, NULL, N, mbits, spread, lowband, resynth, ec, remaining_bits, LM, NULL, NULL); if (sbits) { if (encode) { if (v[0]*w[1] - v[1]*w[0] > 0) sign = 1; else sign = -1; ec_enc_bits(ec, sign==1, 1); } else { sign = 2*ec_dec_bits((ec_dec*)ec, 1)-1; } } else { sign = 1; } w[0] = -sign*v[1]; w[1] = sign*v[0]; if (c==0) { x2[0] = v[0]; x2[1] = v[1]; y2[0] = w[0]; y2[1] = w[1]; } else { x2[0] = w[0]; x2[1] = w[1]; y2[0] = v[0]; y2[1] = v[1]; } } else #endif { mbits = (b-qalloc/2-delta)/2; if (mbits > b-qalloc) mbits = b-qalloc; if (mbits<0) mbits=0; sbits = b-qalloc-mbits; *remaining_bits -= qalloc; quant_band(encode, m, i, X, NULL, N, mbits, spread, lowband, resynth, ec, remaining_bits, LM, NULL, NULL); if (stereo) quant_band(encode, m, i, Y, NULL, N, sbits, spread, NULL, resynth, ec, remaining_bits, LM, NULL, NULL); else quant_band(encode, m, i, Y, NULL, N, sbits, spread, lowband ? lowband+N : NULL, resynth, ec, remaining_bits, LM, NULL, NULL); } } else { q = bits2pulses(m, m->bits[LM][i], N, b); curr_bits = pulses2bits(m->bits[LM][i], N, q); *remaining_bits -= curr_bits; while (*remaining_bits < 0 && q > 0) { *remaining_bits += curr_bits; q--; curr_bits = pulses2bits(m->bits[LM][i], N, q); *remaining_bits -= curr_bits; } if (encode) alg_quant(X, N, q, spread, lowband, resynth, ec); else alg_unquant(X, N, q, spread, lowband, (ec_dec*)ec); } if (resynth && lowband_out) { int j; celt_word16 n; n = celt_sqrt(SHL32(EXTEND32(N0),22)); for (j=0;jeBands; celt_norm * restrict norm; VARDECL(celt_norm, _norm); int B; int M; int spread; SAVE_STACK; M = 1<nbEBands+1], celt_norm); norm = _norm; /* Just in case the first bands attempts to fold -- not that rare for stereo */ for (i=0;inbEBands;i++) { int tell; int b; int N; int curr_balance; celt_norm * restrict X, * restrict Y; X = _X+M*eBands[i]; if (_Y!=NULL) Y = _Y+M*eBands[i]; else Y = NULL; N = M*eBands[i+1]-M*eBands[i]; if (encode) tell = ec_enc_tell(ec, BITRES); else tell = ec_dec_tell((ec_dec*)ec, BITRES); if (i != start) balance -= tell; remaining_bits = (total_bits<nbEBands-i); if (curr_balance > 3) curr_balance = 3; curr_balance = balance / curr_balance; b = IMIN(remaining_bits+1,pulses[i]+curr_balance); if (b<0) b = 0; quant_band(encode, m, i, X, Y, N, b, spread, norm+M*eBands[start], resynth, ec, &remaining_bits, LM, norm+M*eBands[i], bandE); balance += pulses[i] + tell; if (resynth && _Y != NULL) { stereo_band_mix(m, X, Y, bandE, 0, i, -1, M); renormalise_vector(X, Q15ONE, N, 1); renormalise_vector(Y, Q15ONE, N, 1); } } RESTORE_STACK; }