#!/usr/bin/python3 '''Copyright (c) 2018 Mozilla Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ''' import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.2 set_session(tf.Session(config=config)) model, enc, dec = lpcnet.new_lpcnet_model() model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) #model.summary() feature_file = sys.argv[1] out_file = sys.argv[2] frame_size = 160 nb_features = 55 nb_used_features = model.nb_used_features features = np.fromfile(feature_file, dtype='float32') features = np.resize(features, (-1, nb_features)) nb_frames = 1 feature_chunk_size = features.shape[0] pcm_chunk_size = frame_size*feature_chunk_size features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features[:,:,18:36] = 0 periods = (50*features[:,:,36:37]+100).astype('int16') model.load_weights('lpcnet9_384_10_G16_120.h5') order = 16 pcm = np.zeros((nb_frames*pcm_chunk_size, )) fexc = np.zeros((1, 1, 2), dtype='float32') iexc = np.zeros((1, 1, 1), dtype='int16') state1 = np.zeros((1, model.rnn_units1), dtype='float32') state2 = np.zeros((1, model.rnn_units2), dtype='float32') mem = 0 coef = 0.85 fout = open(out_file, 'wb') skip = order + 1 for c in range(0, nb_frames): cfeat = enc.predict([features[c:c+1, :, :nb_used_features], periods[c:c+1, :, :]]) for fr in range(0, feature_chunk_size): f = c*feature_chunk_size + fr a = features[c, fr, nb_features-order:] for i in range(skip, frame_size): pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1]) fexc[0, 0, 1] = lin2ulaw(pred) p, state1, state2 = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state1, state2]) #Lower the temperature for voiced frames to reduce noisiness p *= np.power(p, np.maximum(0, 1.5*features[c, fr, 37] - .5)) p = p/(1e-18 + np.sum(p)) #Cut off the tail of the remaining distribution p = np.maximum(p-0.002, 0).astype('float64') p = p/(1e-8 + np.sum(p)) iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1)) pcm[f*frame_size + i] = pred + ulaw2lin(iexc[0, 0, 0]) fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i]) mem = coef*mem + pcm[f*frame_size + i] #print(mem) np.array([np.round(mem)], dtype='int16').tofile(fout) skip = 0