""" module implementing PCM embeddings for LPCNet """ import math as m import torch from torch import nn class PCMEmbedding(nn.Module): def __init__(self, embed_dim=128, num_levels=256): super(PCMEmbedding, self).__init__() self.embed_dim = embed_dim self.num_levels = num_levels self.embedding = nn.Embedding(self.num_levels, self.num_dim) # initialize with torch.no_grad(): num_rows, num_cols = self.num_levels, self.embed_dim a = m.sqrt(12) * (torch.rand(num_rows, num_cols) - 0.5) for i in range(num_rows): a[i, :] += m.sqrt(12) * (i - num_rows / 2) self.embedding.weight[:, :] = 0.1 * a def forward(self, x): return self.embeddint(x) class DifferentiablePCMEmbedding(PCMEmbedding): def __init__(self, embed_dim, num_levels=256): super(DifferentiablePCMEmbedding, self).__init__(embed_dim, num_levels) def forward(self, x): x_int = (x - torch.floor(x)).detach().long() x_frac = x - x_int x_next = torch.minimum(x_int + 1, self.num_levels) embed_0 = self.embedding(x_int) embed_1 = self.embedding(x_next) return (1 - x_frac) * embed_0 + x_frac * embed_1