/* Copyright (c) 2018 Mozilla 2008-2011 Octasic Inc. 2012-2017 Jean-Marc Valin */ /* Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include #include #include "opus_types.h" #include "arch.h" #include "tansig_table.h" #include "nnet.h" #include "nnet_data.h" #include "dred_rdovae_constants.h" #include "plc_data.h" #include "os_support.h" #ifdef NO_OPTIMIZATIONS #if defined(_MSC_VER) #pragma message ("Compiling without any vectorization. This code will be very slow") #else #warning Compiling without any vectorization. This code will be very slow #endif #endif #define SOFTMAX_HACK #define MAX_ACTIVATIONS (4096) static OPUS_INLINE void vec_swish(float *y, const float *x, int N) { int i; float tmp[MAX_ACTIVATIONS]; celt_assert(N <= MAX_ACTIVATIONS); vec_sigmoid(tmp, x, N); for (i=0;ibias; M = linear->nb_inputs; N = linear->nb_outputs; if (linear->float_weights != NULL) { if (linear->weights_idx != NULL) sparse_sgemv8x4(out, linear->float_weights, linear->weights_idx, N, in); else sgemv(out, linear->float_weights, N, M, N, in); } else if (linear->weights != NULL) { if (linear->weights_idx != NULL) sparse_cgemv8x4(out, linear->weights, linear->weights_idx, linear->scale, N, M, in); else cgemv8x4(out, linear->weights, linear->scale, N, M, in); /* Only use SU biases on for integer matrices on SU archs. */ #ifdef USE_SU_BIAS bias = linear->subias; #endif } else OPUS_CLEAR(out, N); if (bias != NULL) { for (i=0;idiag) { /* Diag is only used for GRU recurrent weights. */ celt_assert(3*M == N); for (i=0;idiag[i]*in[i]; out[i+M] += linear->diag[i+M]*in[i]; out[i+2*M] += linear->diag[i+2*M]*in[i]; } } } void compute_generic_dense(const LinearLayer *layer, float *output, const float *input, int activation) { compute_linear(layer, output, input); compute_activation(output, output, layer->nb_outputs, activation); } #define MAX_RNN_NEURONS_ALL IMAX(IMAX(MAX_RNN_NEURONS, PLC_MAX_RNN_NEURONS), DRED_MAX_RNN_NEURONS) void compute_generic_gru(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in) { int i; int N; float zrh[3*MAX_RNN_NEURONS_ALL]; float recur[3*MAX_RNN_NEURONS_ALL]; float *z; float *r; float *h; celt_assert(3*recurrent_weights->nb_inputs == recurrent_weights->nb_outputs); celt_assert(input_weights->nb_outputs == recurrent_weights->nb_outputs); N = recurrent_weights->nb_inputs; z = zrh; r = &zrh[N]; h = &zrh[2*N]; celt_assert(recurrent_weights->nb_outputs <= 3*MAX_RNN_NEURONS_ALL); celt_assert(in != state); compute_linear(input_weights, zrh, in); compute_linear(recurrent_weights, recur, state); for (i=0;i<2*N;i++) zrh[i] += recur[i]; compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID); for (i=0;inb_inputs == layer->nb_outputs); compute_activation(act1, input, layer->nb_outputs, activation); compute_linear(layer, act2, input); compute_activation(act2, act2, layer->nb_outputs, ACTIVATION_SIGMOID); for (i=0;inb_outputs;i++) output[i] = act1[i]*act2[i]; } void compute_activation(float *output, const float *input, int N, int activation) { int i; if (activation == ACTIVATION_SIGMOID) { vec_sigmoid(output, input, N); } else if (activation == ACTIVATION_TANH) { vec_tanh(output, input, N); } else if (activation == ACTIVATION_SWISH) { vec_swish(output, input, N); } else if (activation == ACTIVATION_RELU) { for (i=0;ibias; matrix.subias = NULL; matrix.float_weights = layer->input_weights; matrix.weights = NULL; matrix.weights_idx = NULL; matrix.diag = NULL; matrix.nb_inputs = layer->nb_inputs; matrix.nb_outputs = layer->nb_neurons; matrix.scale = NULL; compute_linear(&matrix, output, input); compute_activation(output, output, layer->nb_neurons, layer->activation); } int sample_mdense(const MDenseLayer *layer, const float *input, const float *sampling_logit_table, kiss99_ctx *rng) { int b, j, N, M, C, stride; int val=0; float thresholds[8]; M = layer->nb_inputs; N = layer->nb_neurons; C = layer->nb_channels; celt_assert(N*C <= MAX_MDENSE_TMP); stride = M*C; celt_assert(N <= DUAL_FC_OUT_SIZE); /* Computing all the random thresholds in advance. These thresholds are directly based on the logit to avoid computing the sigmoid.*/ for (b=0;b<8;b+=4) { uint32_t r = kiss99_rand(rng); thresholds[b] = sampling_logit_table[r&0xFF]; thresholds[b+1] = sampling_logit_table[(r>>8)&0xFF]; thresholds[b+2] = sampling_logit_table[(r>>16)&0xFF]; thresholds[b+3] = sampling_logit_table[(r>>24)&0xFF]; } for (b=0;b<8;b++) { int bit; int i; float sum1, sum2; i = (1<bias[i]; sum2 = layer->bias[i + N]; for (j=0;jinput_weights[i*stride + j]*input[j]; sum2 += layer->input_weights[i*stride + j + M]*input[j]; } sum1 = layer->factor[i]*tanh_approx(sum1); sum2 = layer->factor[N + i]*tanh_approx(sum2); sum1 += sum2; /*sum1 = 1.f/(1 + exp(-sum1));*/ #if 1 /* Sample the decision based on the logit. */ bit = thresholds[b] < sum1; #else sum1 = sigmoid_approx(sum1); bit = .025+.95*((rand()+.5f)/(RAND_MAX+1.f)) < sum1; #endif val = (val << 1) | bit; } return val; } #ifdef USE_SU_BIAS #define bias_type subias #else #define bias_type bias #endif #define MAX_IDX_SIZE 8192 void compute_gruB(const GRULayer *gru, const float* gru_b_condition, float *state, const float *input) { LinearLayer in_matrix, rec_matrix; int i, M, N; float bias[3*MAX_RNN_NEURONS_ALL]; float scale[3*MAX_RNN_NEURONS_ALL]; M = gru->nb_inputs; N = gru->nb_neurons; in_matrix.bias = bias; in_matrix.diag = NULL; in_matrix.nb_inputs = M; in_matrix.nb_outputs = 3*N; in_matrix.subias = bias; #ifdef DISABLE_DOT_PROD for (i=0;i<3*N;i++) bias[i] = gru->bias[i] + gru_b_condition[i]; in_matrix.scale = NULL; in_matrix.float_weights = gru->input_weights; in_matrix.weights = NULL; #else for (i=0;i<3*N;i++) bias[i] = gru->bias_type[i] + gru_b_condition[i]; for (i=0;i<3*N;i++) scale[i] = SCALE_1; in_matrix.scale = scale; in_matrix.weights = gru->input_weights; in_matrix.float_weights = NULL; #endif in_matrix.weights_idx = gru->input_weights_idx; rec_matrix.bias = &gru->bias[3*N]; rec_matrix.diag = NULL; rec_matrix.nb_inputs = N; rec_matrix.nb_outputs = 3*N; rec_matrix.scale = scale; rec_matrix.subias = &gru->subias[3*N]; #ifdef DISABLE_DOT_PROD rec_matrix.scale = NULL; rec_matrix.float_weights = gru->recurrent_weights; rec_matrix.weights = NULL; #else rec_matrix.scale = scale; rec_matrix.weights = gru->recurrent_weights; rec_matrix.float_weights = NULL; #endif rec_matrix.weights_idx = NULL; compute_generic_gru(&in_matrix, &rec_matrix, state, input); } /* The input of this GRU is after the input matrix multiply. */ void compute_sparse_gru(const SparseGRULayer *gru, float *state, const float *input) { LinearLayer in_matrix, rec_matrix; int i, N; float scale[3*MAX_RNN_NEURONS_ALL]; N = gru->nb_neurons; in_matrix.bias = input; in_matrix.diag = NULL; in_matrix.nb_inputs = N; in_matrix.nb_outputs = 3*N; in_matrix.subias = input; in_matrix.scale = NULL; in_matrix.float_weights = NULL; in_matrix.weights = NULL; in_matrix.weights_idx = NULL; rec_matrix.bias = &gru->bias[3*N]; rec_matrix.diag = gru->diag_weights; rec_matrix.nb_inputs = N; rec_matrix.nb_outputs = 3*N; rec_matrix.subias = &gru->subias[3*N]; #ifdef DISABLE_DOT_PROD rec_matrix.scale = NULL; rec_matrix.float_weights = gru->recurrent_weights; rec_matrix.weights = NULL; #else for (i=0;i<3*N;i++) scale[i] = SCALE_1; rec_matrix.scale = scale; rec_matrix.weights = gru->recurrent_weights; rec_matrix.float_weights = NULL; #endif rec_matrix.weights_idx = gru->idx; compute_generic_gru(&in_matrix, &rec_matrix, state, input); } #define MAX_CONV_INPUTS_ALL IMAX(MAX_CONV_INPUTS, DRED_MAX_CONV_INPUTS) void compute_generic_conv1d(const LinearLayer *layer, float *output, float *mem, const float *input, int input_size, int activation) { float tmp[MAX_CONV_INPUTS_ALL]; celt_assert(input != output); celt_assert(layer->nb_inputs <= MAX_CONV_INPUTS_ALL); OPUS_COPY(tmp, mem, layer->nb_inputs-input_size); OPUS_COPY(&tmp[layer->nb_inputs-input_size], input, input_size); compute_linear(layer, output, tmp); compute_activation(output, output, layer->nb_outputs, activation); OPUS_COPY(mem, &tmp[input_size], layer->nb_inputs-input_size); } void compute_conv1d(const Conv1DLayer *layer, float *output, float *mem, const float *input) { LinearLayer matrix; int N, M; M = layer->nb_inputs*layer->kernel_size; N = layer->nb_neurons; matrix.bias = layer->bias; matrix.subias = NULL; matrix.float_weights = layer->input_weights; matrix.weights = NULL; matrix.weights_idx = NULL; matrix.diag = NULL; matrix.nb_inputs = M; matrix.nb_outputs = N; matrix.scale = NULL; compute_generic_conv1d(&matrix, output, mem, input, layer->nb_inputs, layer->activation); } /* Computes non-padded convolution for input [ ksize1 x in_channels x (len2+ksize2) ], kernel [ out_channels x in_channels x ksize1 x ksize2 ], storing the output as [ out_channels x len2 ]. We assume that the output dimension along the ksize1 axis is 1, i.e. processing one frame at a time. */ void conv2d_float(float *out, const float *weights, int in_channels, int out_channels, int ktime, int kheight, const float *in, int len2) { int i; int in_stride; in_stride = len2+kheight-1; OPUS_CLEAR(out, out_channels*len2); for (i=0;iin_channels*(len2+conv->kheight); celt_assert(conv->ktime*time_stride <= MAX_CONV2D_INPUTS); OPUS_COPY(in_buf, mem, (conv->ktime-1)*time_stride); OPUS_COPY(&in_buf[(conv->ktime-1)*time_stride], in, time_stride); OPUS_COPY(mem, &in_buf[time_stride], (conv->ktime-1)*time_stride); bias = conv->bias; conv2d_float(out, conv->float_weights, conv->in_channels, conv->out_channels, conv->ktime, conv->kheight, in_buf, len2); if (bias != NULL) { for (i=0;iout_channels*len2;i++) out[i] += bias[i]; } compute_activation(out, out, conv->out_channels*len2, activation); } void compute_embedding(const EmbeddingLayer *layer, float *output, int input) { int i; celt_assert(input >= 0); celt_assert(input < layer->nb_inputs); /*if (layer->dim == 64) printf("%d\n", input);*/ for (i=0;idim;i++) { output[i] = layer->embedding_weights[input*layer->dim + i]; } } void compute_gru_a_input(float *output, const float *input, int N, const EmbeddingLayer *layer1, int val1, const EmbeddingLayer *layer2, int val2, const EmbeddingLayer *layer3, int val3) { int i; for (i=0;i<3*N;i++) { output[i] = input[i] + layer1->embedding_weights[val1*layer1->dim + i] + layer2->embedding_weights[val2*layer2->dim + i] + layer3->embedding_weights[val3*layer3->dim + i]; } } void accum_embedding(const EmbeddingLayer *layer, float *output, int input) { int i; celt_assert(input >= 0); celt_assert(input < layer->nb_inputs); /*if (layer->dim == 64) printf("%d\n", input);*/ for (i=0;idim;i++) { output[i] += layer->embedding_weights[input*layer->dim + i]; } }