#!/usr/bin/python3 import lpcnet import sys import numpy as np from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from ulaw import ulaw2lin, lin2ulaw import keras.backend as K import h5py import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.44 set_session(tf.Session(config=config)) nb_epochs = 40 batch_size = 64 model = lpcnet.new_wavernn_model() model.compile(optimizer=Adam(0.0008), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.summary() pcmfile = sys.argv[1] feature_file = sys.argv[2] frame_size = 160 nb_features = 54 nb_used_features = lpcnet.nb_used_features feature_chunk_size = 15 pcm_chunk_size = frame_size*feature_chunk_size data = np.fromfile(pcmfile, dtype='int8') nb_frames = len(data)//pcm_chunk_size features = np.fromfile(feature_file, dtype='float32') data = data[:nb_frames*pcm_chunk_size] features = features[:nb_frames*feature_chunk_size*nb_features] in_data = np.concatenate([data[0:1], data[:-1]])/16.; features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features)) pitch = 1.*data pitch[:320] = 0 for i in range(2, nb_frames*feature_chunk_size): period = int(50*features[i,36]+100) period = period - 4 pitch[i*frame_size:(i+1)*frame_size] = data[i*frame_size-period:(i+1)*frame_size-period] in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1)) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) out_data = np.reshape(data, (nb_frames, pcm_chunk_size, 1)) out_data = (out_data.astype('int16')+128).astype('uint8') features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = features[:, :, :nb_used_features] #in_data = np.concatenate([in_data, in_pitch], axis=-1) #with h5py.File('in_data.h5', 'w') as f: # f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :]) checkpoint = ModelCheckpoint('lpcnet1g_{epoch:02d}.h5') #model.load_weights('wavernn1c_01.h5') model.compile(optimizer=Adam(0.002, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.fit([in_data, in_pitch, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])