#!/usr/bin/python3 import math from keras.models import Model from keras.layers import Input, LSTM, CuDNNGRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Bidirectional, MaxPooling1D, Activation from keras import backend as K from mdense import MDense import numpy as np import h5py import sys rnn_units=64 pcm_bits = 8 pcm_levels = 2**pcm_bits nb_used_features = 37 def new_wavernn_model(): pcm = Input(shape=(None, 1)) pitch = Input(shape=(None, 1)) feat = Input(shape=(None, nb_used_features)) conv1 = Conv1D(16, 7, padding='causal') pconv1 = Conv1D(16, 5, padding='same') pconv2 = Conv1D(16, 5, padding='same') fconv1 = Conv1D(128, 3, padding='same') fconv2 = Conv1D(32, 3, padding='same') if True: cpcm = conv1(pcm) cpitch = pconv2(pconv1(pitch)) else: cpcm = pcm cpitch = pitch cfeat = fconv2(fconv1(feat)) rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) rnn = CuDNNGRU(rnn_units, return_sequences=True) rnn_in = Concatenate()([cpcm, cpitch, rep(cfeat)]) md = MDense(pcm_levels, activation='softmax') ulaw_prob = md(rnn(rnn_in)) model = Model([pcm, pitch, feat], ulaw_prob) return model