Chopping silence from the training data

This commit is contained in:
Jean-Marc Valin 2018-12-01 14:38:27 -05:00
parent 407eec127c
commit f933725677
2 changed files with 22 additions and 4 deletions

View file

@ -136,7 +136,7 @@ periods = (50*features[:,:,36:37]+100).astype('int16')
in_data = np.concatenate([in_data, pred], axis=-1)
# dump models to disk as we go
checkpoint = ModelCheckpoint('lpcnet9b_384_10_G16_{epoch:02d}.h5')
checkpoint = ModelCheckpoint('lpcnet9c_384_10_G16_{epoch:02d}.h5')
#model.load_weights('wavenet4f2_30.h5')
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])