Support for dumping LinearLayer in weight-exchange

This commit is contained in:
Jan Buethe 2023-07-24 17:13:49 -07:00 committed by Jean-Marc Valin
parent b075eb535a
commit eb72d29a15
No known key found for this signature in database
GPG key ID: 531A52533318F00A
9 changed files with 214 additions and 201 deletions

View file

@ -29,6 +29,9 @@
import os import os
import argparse import argparse
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), '../weight-exchange'))
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
@ -83,20 +86,30 @@ def c_export(args, model):
message = f"Auto generated from checkpoint {os.path.basename(args.checkpoint)}" message = f"Auto generated from checkpoint {os.path.basename(args.checkpoint)}"
enc_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_enc_data"), message=message) enc_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_enc_data"), message=message, model_struct_name='RDOVAEEnc')
dec_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_dec_data"), message=message) dec_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_dec_data"), message=message, model_struct_name='RDOVAEDec')
stats_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_stats_data"), message=message) stats_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_stats_data"), message=message, enable_binary_blob=False)
constants_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_constants"), message=message, header_only=True) constants_writer = CWriter(os.path.join(args.output_dir, "dred_rdovae_constants"), message=message, header_only=True, enable_binary_blob=False)
# some custom includes # some custom includes
for writer in [enc_writer, dec_writer, stats_writer]: for writer in [enc_writer, dec_writer]:
writer.header.write( writer.header.write(
f""" f"""
#include "opus_types.h" #include "opus_types.h"
#include "dred_rdovae.h"
#include "dred_rdovae_constants.h"
"""
)
stats_writer.header.write(
f"""
#include "opus_types.h"
#include "dred_rdovae_constants.h" #include "dred_rdovae_constants.h"
#include "nnet.h"
""" """
) )
@ -111,9 +124,9 @@ f"""
('core_encoder.module.state_dense_2' , 'gdense2' , 'TANH') ('core_encoder.module.state_dense_2' , 'gdense2' , 'TANH')
] ]
for name, export_name, activation in encoder_dense_layers: for name, export_name, _ in encoder_dense_layers:
layer = model.get_submodule(name) layer = model.get_submodule(name)
dump_torch_weights(enc_writer, layer, name=export_name, activation=activation, verbose=True) dump_torch_weights(enc_writer, layer, name=export_name, verbose=True)
encoder_gru_layers = [ encoder_gru_layers = [
@ -122,15 +135,15 @@ f"""
('core_encoder.module.gru_3' , 'enc_dense6', 'TANH') ('core_encoder.module.gru_3' , 'enc_dense6', 'TANH')
] ]
enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, activation, verbose=True, input_sparse=True, dotp=True) enc_max_rnn_units = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
for name, export_name, activation in encoder_gru_layers]) for name, export_name, _ in encoder_gru_layers])
encoder_conv_layers = [ encoder_conv_layers = [
('core_encoder.module.conv1' , 'bits_dense' , 'LINEAR') ('core_encoder.module.conv1' , 'bits_dense' , 'LINEAR')
] ]
enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, activation, verbose=True) for name, export_name, activation in encoder_conv_layers]) enc_max_conv_inputs = max([dump_torch_weights(enc_writer, model.get_submodule(name), export_name, verbose=True, quantize=False) for name, export_name, _ in encoder_conv_layers])
del enc_writer del enc_writer
@ -148,9 +161,9 @@ f"""
('core_decoder.module.output' , 'dec_final', 'LINEAR') ('core_decoder.module.output' , 'dec_final', 'LINEAR')
] ]
for name, export_name, activation in decoder_dense_layers: for name, export_name, _ in decoder_dense_layers:
layer = model.get_submodule(name) layer = model.get_submodule(name)
dump_torch_weights(dec_writer, layer, name=export_name, activation=activation, verbose=True) dump_torch_weights(dec_writer, layer, name=export_name, verbose=True)
decoder_gru_layers = [ decoder_gru_layers = [
@ -159,8 +172,8 @@ f"""
('core_decoder.module.gru_3' , 'dec_dense6', 'TANH') ('core_decoder.module.gru_3' , 'dec_dense6', 'TANH')
] ]
dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, activation, verbose=True, input_sparse=True, dotp=True) dec_max_rnn_units = max([dump_torch_weights(dec_writer, model.get_submodule(name), export_name, verbose=True, input_sparse=True, quantize=True)
for name, export_name, activation in decoder_gru_layers]) for name, export_name, _ in decoder_gru_layers])
del dec_writer del dec_writer

View file

@ -2,4 +2,3 @@ numpy
scipy scipy
torch torch
tqdm tqdm
libs/wexchange-1.2-py3-none-any.whl

View file

@ -39,7 +39,7 @@ with open(os.path.join(lib_folder, 'requirements.txt'), 'r') as f:
print(install_requires) print(install_requires)
setup(name='wexchange', setup(name='wexchange',
version='1.4', version='1.5',
author='Jan Buethe', author='Jan Buethe',
author_email='jbuethe@amazon.de', author_email='jbuethe@amazon.de',
description='Weight-exchange library between Pytorch and Tensorflow', description='Weight-exchange library between Pytorch and Tensorflow',

View file

@ -35,8 +35,8 @@ class CWriter:
filename_without_extension, filename_without_extension,
message=None, message=None,
header_only=False, header_only=False,
enable_binary_blob=False,
create_state_struct=False, create_state_struct=False,
enable_binary_blob=True,
model_struct_name="Model", model_struct_name="Model",
nnet_header="nnet.h"): nnet_header="nnet.h"):
""" """
@ -78,7 +78,7 @@ class CWriter:
self.layer_dict = OrderedDict() self.layer_dict = OrderedDict()
# for binary blob format, format is key=<layer name>, value=<layer type> # for binary blob format, format is key=<layer name>, value=<layer type>
self.weight_arrays = set() self.weight_arrays = []
# form model struct, format is key=<layer name>, value=<number of elements> # form model struct, format is key=<layer name>, value=<number of elements>
self.state_dict = OrderedDict() self.state_dict = OrderedDict()
@ -134,6 +134,8 @@ f"""
if self.enable_binary_blob: if self.enable_binary_blob:
# create weight array # create weight array
if len(set(self.weight_arrays)) != len(self.weight_arrays):
raise ValueError("error: detected duplicates in weight arrays")
self.source.write("\n#ifndef USE_WEIGHTS_FILE\n") self.source.write("\n#ifndef USE_WEIGHTS_FILE\n")
self.source.write(f"const WeightArray {self.model_struct_name.lower()}_arrays[] = {{\n") self.source.write(f"const WeightArray {self.model_struct_name.lower()}_arrays[] = {{\n")
for name in self.weight_arrays: for name in self.weight_arrays:

View file

@ -29,27 +29,49 @@ import numpy as np
from .c_writer import CWriter from .c_writer import CWriter
def print_vector(writer, vector, name, dtype='float', dotp=False, static=True): def print_vector(writer, vector, name, dtype='float', reshape_8x4=False, static=True, debug_float=False):
if isinstance(writer, CWriter):
f = writer.source f = writer.source
binary_blob = writer.enable_binary_blob binary_blob = writer.enable_binary_blob
else:
f = writer
binary_blob = False
dtype_suffix = {
'float' : 'float',
'opus_int8' : 'int8',
'opus_uint16' : 'uint16',
'opus_int16' : 'int16',
'int' : 'int',
'qweight': 'qweight'
}
if binary_blob: if binary_blob:
f.write( f.write(
f''' f'''
#ifndef USE_WEIGHTS_FILE #ifndef USE_WEIGHTS_FILE
#define WEIGHTS_{name}_DEFINED
#define WEIGHTS_{name}_TYPE WEIGHT_TYPE_{"qweight" if dotp else "float"}
''' '''
) )
writer.weight_arrays.add(name) writer.weight_arrays.append(name)
if dotp: if reshape_8x4:
vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8)) vector = vector.reshape((vector.shape[0]//4, 4, vector.shape[1]//8, 8))
vector = vector.transpose((2, 0, 3, 1)) vector = vector.transpose((2, 0, 3, 1))
v = np.reshape(vector, (-1)) v = np.reshape(vector, (-1))
if debug_float:
f.write('#ifndef DISABLE_DEBUG_FLOAT\n')
if binary_blob:
f.write(
f'''
#define WEIGHTS_{name}_DEFINED
#define WEIGHTS_{name}_TYPE WEIGHT_TYPE_{dtype_suffix[dtype]}
'''
)
if static: if static:
f.write('static ') f.write('static ')
@ -70,6 +92,8 @@ f'''
f.write(" ") f.write(" ")
f.write('\n};\n\n') f.write('\n};\n\n')
if debug_float: f.write('#endif /*DISABLE_DEBUG_FLOAT*/\n')
if binary_blob: if binary_blob:
f.write( f.write(
f''' f'''
@ -81,19 +105,48 @@ f'''
def print_sparse_vector(writer, A, name, have_diag=True): def extract_diagonal(A):
f = writer.source """ input shape is (N, k*N) """
N, M = A.shape
B = A.copy()
assert M % N == 0
k = M // N
diags = []
for l in range(k):
diag = np.diag(B[:, l * N : (l+1) * N]).copy()
B[:, l * N : (l+1) * N] -= np.diag(diag)
diags.append(diag)
diag = np.concatenate(diags)
return diag, B
def quantize_weight(weight, scale):
Aq = np.round(weight / scale).astype('int')
if Aq.max() > 127 or Aq.min() <= -128:
raise ValueError("value out of bounds in quantize_weight")
Aq = np.clip(np.round(weight / scale).astype('int'), -128, 127)
return Aq
def print_sparse_weight(writer, A, name, scale=1/128, have_diag=True, quantize=False):
N = A.shape[0] N = A.shape[0]
M = A.shape[1] M = A.shape[1]
W = np.zeros((0,), dtype='int') W = np.zeros((0,), dtype='int')
W0 = np.zeros((0,)) W0 = np.zeros((0,))
if have_diag: if have_diag:
diag = np.concatenate([np.diag(A[:,:N]), np.diag(A[:,N:2*N]), np.diag(A[:,2*N:])]) diag, A = extract_diagonal(A)
A[:,:N] = A[:,:N] - np.diag(np.diag(A[:,:N]))
A[:,N:2*N] = A[:,N:2*N] - np.diag(np.diag(A[:,N:2*N]))
A[:,2*N:] = A[:,2*N:] - np.diag(np.diag(A[:,2*N:]))
print_vector(writer, diag, name + '_diag') print_vector(writer, diag, name + '_diag')
AQ = np.minimum(127, np.maximum(-128, np.round(A*128))).astype('int')
if quantize:
Aq = quantize_weight(A, scale)
else:
Aq = A
# extract blocks
idx = np.zeros((0,), dtype='int') idx = np.zeros((0,), dtype='int')
for i in range(M//8): for i in range(M//8):
pos = idx.shape[0] pos = idx.shape[0]
@ -101,7 +154,7 @@ def print_sparse_vector(writer, A, name, have_diag=True):
nb_nonzero = 0 nb_nonzero = 0
for j in range(N//4): for j in range(N//4):
block = A[j*4:(j+1)*4, i*8:(i+1)*8] block = A[j*4:(j+1)*4, i*8:(i+1)*8]
qblock = AQ[j*4:(j+1)*4, i*8:(i+1)*8] qblock = Aq[j*4:(j+1)*4, i*8:(i+1)*8]
if np.sum(np.abs(block)) > 1e-10: if np.sum(np.abs(block)) > 1e-10:
nb_nonzero = nb_nonzero + 1 nb_nonzero = nb_nonzero + 1
idx = np.append(idx, j*4) idx = np.append(idx, j*4)
@ -109,102 +162,125 @@ def print_sparse_vector(writer, A, name, have_diag=True):
W0 = np.concatenate([W0, block.reshape((-1,))]) W0 = np.concatenate([W0, block.reshape((-1,))])
W = np.concatenate([W, vblock]) W = np.concatenate([W, vblock])
idx[pos] = nb_nonzero idx[pos] = nb_nonzero
f.write('#ifdef DOT_PROD\n')
print_vector(writer, W, name, dtype='qweight')
f.write('#else /*DOT_PROD*/\n')
print_vector(writer, W0, name, dtype='qweight')
f.write('#endif /*DOT_PROD*/\n')
print_vector(writer, idx, name + '_idx', dtype='int') if quantize: print_vector(writer, W, name + '_int8', reshape_8x4=False, dtype='opus_int8')
return AQ print_vector(writer, W0, name + '_float', reshape_8x4=False, dtype='float', debug_float=quantize)
print_vector(writer, idx, name + '_idx', reshape_8x4=False, dtype='int')
return Aq
def qn(string):
if string == "NULL": return string
else: return '"' + string + '"'
def print_linear_layer(writer : CWriter,
name : str,
weight : np.ndarray,
bias : np.ndarray,
scale : np.ndarray = None,
sparse : bool = False,
diagonal : bool = False,
quantize : bool = True):
""" prints linear layer
Parameters:
-----------
name : str
layer name
weight: np.ndarray
...
scale: np.ndarray or None
If None auto scaling will be applied. Otherwise, output channels will be multiplied by scale (the usual broadcasting rules apply).
"""
if len(weight.shape) != 2:
raise ValueError('expecting 2-dim weight array in print_linear_layer')
bias_name = "NULL" if bias is None else name + "_bias"
subias_name = name + "_subias" if quantize else "NULL"
scale_name = name + "_scale" if quantize else "NULL"
idx_name = name + "_weights_idx" if sparse else "NULL"
float_weight_name = name + "_weights_float"
int_weight_name = name + "_weights_int8" if quantize else "NULL"
diag_name = name + "_weights_diag" if sparse and diagonal else "NULL"
nb_inputs, nb_outputs = weight.shape
if scale is None:
raise ValueError("None scale case not implemented yet.")
if sparse:
weight_q = print_sparse_weight(writer, weight, name + "_weights", scale=scale, have_diag=diagonal, quantize=quantize)
else:
if quantize:
weight_q = quantize_weight(weight, scale)
print_vector(writer, weight_q, name + "_weights_int8", dtype='opus_int8', reshape_8x4=True)
print_vector(writer, weight, name + "_weights_float", dtype='float', reshape_8x4=False, debug_float=quantize)
if quantize:
subias = (np.zeros(nb_outputs) if bias is None else bias) - np.sum(weight_q * scale, axis=0)
print_vector(writer, subias, name + "_subias")
final_scale = scale / 127 * np.ones(nb_outputs)
print_vector(writer, final_scale, name + "_scale")
if bias is not None:
print_vector(writer, bias, name + "_bias")
init_call = f'linear_init(&model->{name}, arrays, {qn(bias_name)}, {qn(subias_name)}, {qn(int_weight_name)},' \
+ f'{qn(float_weight_name)}, {qn(idx_name)}, {qn(diag_name)}, {qn(scale_name)}, {nb_inputs}, {nb_outputs})'
writer.layer_dict[name] = ('LinearLayer', init_call)
def _check_activation(activation):
if not activation in {"TANH", "SIGMOID", "LINEAR", "SWISH", "RELU", "SOFTMAX"}:
raise ValueError(f"error: unknown activation {activation}")
def print_dense_layer(writer : CWriter, def print_dense_layer(writer : CWriter,
name : str, name : str,
weight : np.ndarray, weight : np.ndarray,
bias : np.ndarray, bias : np.ndarray,
activation: str, scale=1/128,
format : str = 'torch'): format : str = 'torch',
sparse=False,
_check_activation(activation) diagonal=False,
quantize=False):
if format == 'torch': if format == 'torch':
weight = weight.transpose() weight = weight.transpose()
print_vector(writer, weight, name + "_weights") print_linear_layer(writer, name, weight, bias, scale=scale, sparse=sparse, diagonal=diagonal, quantize=quantize)
print_vector(writer, bias, name + "_bias")
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[1]}\n") writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[1]}\n")
if writer.enable_binary_blob:
init_call = f'dense_init(&model->{name}, arrays, "{name}_bias", "{name}_weights", {weight.shape[0]}, {weight.shape[1]}, ACTIVATION_{activation})'
writer.layer_dict[name] = ('DenseLayer', init_call)
else:
writer.source.write(
f"""
const DenseLayer {name} = {{
{name}_bias,
{name}_weights,
{weight.shape[0]},
{weight.shape[1]},
ACTIVATION_{activation}
}};
"""
)
writer.header.write(f"\nextern const DenseLayer {name};\n\n")
def print_conv1d_layer(writer : CWriter, def print_conv1d_layer(writer : CWriter,
name : str, name : str,
weight : np.ndarray, weight : np.ndarray,
bias : np.ndarray, bias : np.ndarray,
activation: str, scale=1/128,
format : str = 'torch'): format : str = 'torch',
quantize=False):
_check_activation(activation)
if format == "torch": if format == "torch":
# convert to channels last # convert to channels last
weight = np.transpose(weight, (2, 1, 0)) weight = np.transpose(weight, (2, 1, 0))
print_vector(writer, weight, name + "_weights") lin_weight = np.reshape(weight, (-1, weight.shape[-1]))
print_vector(writer, bias, name + "_bias") print_linear_layer(writer, name, lin_weight, bias, scale=scale, sparse=False, diagonal=False, quantize=quantize)
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[2]}\n") writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {weight.shape[2]}\n")
writer.header.write(f"\n#define {name.upper()}_IN_SIZE {weight.shape[1]}\n")
writer.header.write(f"\n#define {name.upper()}_STATE_SIZE ({weight.shape[1]} * ({weight.shape[0] - 1}))\n") writer.header.write(f"\n#define {name.upper()}_STATE_SIZE ({weight.shape[1]} * ({weight.shape[0] - 1}))\n")
writer.header.write(f"\n#define {name.upper()}_DELAY {(weight.shape[0] - 1) // 2}\n") # CAVE: delay is not a property of the conv layer writer.header.write(f"\n#define {name.upper()}_DELAY {(weight.shape[0] - 1) // 2}\n") # CAVE: delay is not a property of the conv layer
if writer.enable_binary_blob:
init_call = f'conv1d_init(&model->{name}, arrays, "{name}_bias", "{name}_weights", {weight.shape[1]}, {weight.shape[0]}, {weight.shape[2]}, ACTIVATION_{activation})'
writer.layer_dict[name] = ('Conv1DLayer', init_call)
else:
writer.source.write(
f"""
const Conv1DLayer {name} = {{
{name}_bias,
{name}_weights,
{weight.shape[1]},
{weight.shape[0]},
{weight.shape[2]},
ACTIVATION_{activation}
}};
"""
)
writer.header.write(f"\nextern const Conv1DLayer {name};\n\n")
return weight.shape[0] * weight.shape[1] return weight.shape[0] * weight.shape[1]
@ -214,17 +290,16 @@ def print_gru_layer(writer : CWriter,
recurrent_weight : np.ndarray, recurrent_weight : np.ndarray,
bias : np.ndarray, bias : np.ndarray,
recurrent_bias : np.ndarray, recurrent_bias : np.ndarray,
activation: str,
format : str = 'torch', format : str = 'torch',
dotp : bool = False, quantize : bool = False,
input_sparse : bool = False, input_sparse : bool = False,
reset_after : int = 0 recurrent_sparse : bool = False,
scale=1/128,
recurrent_scale=1/128
): ):
_check_activation(activation)
if format == "torch": if format == "torch":
# transpose weight matrices and change gate order from rzn to zrn # change gate ordering from rzn to zrn
N = weight.shape[0] // 3 N = weight.shape[0] // 3
for x in [weight, recurrent_weight, bias, recurrent_bias]: for x in [weight, recurrent_weight, bias, recurrent_bias]:
@ -234,80 +309,14 @@ def print_gru_layer(writer : CWriter,
weight = weight.transpose() weight = weight.transpose()
recurrent_weight = recurrent_weight.transpose() recurrent_weight = recurrent_weight.transpose()
# input weights
if input_sparse:
qweight = print_sparse_vector(writer, weight, name + '_weights', have_diag=False)
else: else:
qweight = np.clip(np.round(128. * weight).astype('int'), -128, 127) N = weight.shape[1] // 3
if dotp:
writer.source.write("#ifdef DOT_PROD\n")
print_vector(writer, qweight, name + '_weights', dtype='qweight', dotp=True)
writer.source.write("#else /*DOT_PROD*/\n")
print_vector(writer, weight, name + '_weights')
if dotp:
writer.source.write("#endif /*DOT_PROD*/\n")
# recurrent weights
recurrent_qweight = np.clip(np.round(128. * recurrent_weight).astype('int'), -128, 127)
if dotp:
writer.source.write("#ifdef DOT_PROD\n")
print_vector(writer, recurrent_qweight, name + '_recurrent_weights', dtype='qweight', dotp=True)
writer.source.write("#else /*DOT_PROD*/\n")
print_vector(writer, recurrent_weight, name + '_recurrent_weights')
if dotp:
writer.source.write("#endif /*DOT_PROD*/\n")
# corrected bias for unsigned int matrix multiplication
subias = bias - np.sum(qweight / 128., axis=0)
recurrent_subias = recurrent_bias - np.sum(recurrent_qweight / 128., axis=0)
print_vector(writer, np.concatenate((bias, recurrent_bias)), name + "_bias")
print_vector(writer, np.concatenate((subias, recurrent_subias)), name + "_subias")
print_linear_layer(writer, name + "_input", weight, bias, scale=scale, sparse=input_sparse, quantize=quantize)
print_linear_layer(writer, name + "_recurrent", recurrent_weight, recurrent_bias, scale=recurrent_scale, sparse=recurrent_sparse, diagonal=recurrent_sparse, quantize=quantize)
# wrapping it up # wrapping it up
writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {N}\n") writer.header.write(f"\n#define {name.upper()}_OUT_SIZE {N}\n")
writer.header.write(f"\n#define {name.upper()}_STATE_SIZE {N}\n") writer.header.write(f"\n#define {name.upper()}_STATE_SIZE {N}\n")
if writer.enable_binary_blob:
if input_sparse:
init_call = f'gru_init(&model->{name}, arrays, "{name}_bias", "{name}_subias", "{name}_weights", "{name + "_weights_idx"}", "{name}_recurrent_weights", {weight.shape[0]}, {weight.shape[1] // 3}, ACTIVATION_{activation}, {reset_after})'
else:
init_call = f'gru_init(&model->{name}, arrays, "{name}_bias", "{name}_subias", "{name}_weights", NULL, "{name}_recurrent_weights", {weight.shape[0]}, {weight.shape[1] // 3}, ACTIVATION_{activation}, {reset_after})'
writer.layer_dict[name] = ('GRULayer', init_call)
else:
writer.source.write(
f"""
const GRULayer {name} = {{
{name}_bias,
{name}_subias,
{name}_weights,
{name + "_weights_idx" if input_sparse else "NULL"},
{name}_recurrent_weights,
{weight.shape[0]},
{weight.shape[1] // 3},
ACTIVATION_{activation},
{reset_after}
}};
"""
)
writer.header.write(f"\nextern const GRULayer {name};\n")
return N return N

View file

@ -34,7 +34,7 @@ import numpy as np
from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer
def dump_tf_gru_weights(where, gru, name=None, input_sparse=False, dotp=False): def dump_tf_gru_weights(where, gru, name='gru', input_sparse=False, recurrent_sparse=False, quantize=False, scale=1/128, recurrent_scale=1/128):
assert gru.activation == tf.keras.activations.tanh assert gru.activation == tf.keras.activations.tanh
@ -47,7 +47,7 @@ def dump_tf_gru_weights(where, gru, name=None, input_sparse=False, dotp=False):
b_hh = gru.weights[2].numpy()[1].copy() b_hh = gru.weights[2].numpy()[1].copy()
if isinstance(where, CWriter): if isinstance(where, CWriter):
return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, 'TANH', format='tf', reset_after=1, input_sparse=input_sparse, dotp=dotp) return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, format='tf', input_sparse=input_sparse, recurrent_sparse=recurrent_sparse, quantize=quantize, scale=scale, recurrent_scale=recurrent_scale)
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)
@ -87,7 +87,7 @@ def load_tf_gru_weights(path, gru):
gru.weights[2].assign(tf.convert_to_tensor(np.vstack((b_ih, b_hh)))) gru.weights[2].assign(tf.convert_to_tensor(np.vstack((b_ih, b_hh))))
def dump_tf_dense_weights(where, dense, name=None): def dump_tf_dense_weights(where, dense, name='dense', scale=1/128, sparse=False, diagonal=False, quantize=False):
w = dense.weights[0].numpy() w = dense.weights[0].numpy()
if dense.bias is None: if dense.bias is None:
@ -98,12 +98,7 @@ def dump_tf_dense_weights(where, dense, name=None):
if isinstance(where, CWriter): if isinstance(where, CWriter):
try: return print_dense_layer(where, name, w, b, scale=scale, format='tf', sparse=sparse, diagonal=diagonal, quantize=quantize)
activation = dense.activation.__name__.upper()
except:
activation = "LINEAR"
return print_dense_layer(where, name, w, b, activation, format='tf')
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)
@ -122,7 +117,7 @@ def load_tf_dense_weights(path, dense):
dense.weights[1].assign(tf.convert_to_tensor(b)) dense.weights[1].assign(tf.convert_to_tensor(b))
def dump_tf_conv1d_weights(where, conv, name=None): def dump_tf_conv1d_weights(where, conv, name='conv', scale=1/128, quantize=False):
assert conv.data_format == 'channels_last' assert conv.data_format == 'channels_last'
@ -133,12 +128,7 @@ def dump_tf_conv1d_weights(where, conv, name=None):
b = conv.bias.numpy() b = conv.bias.numpy()
if isinstance(where, CWriter): if isinstance(where, CWriter):
try: return print_conv1d_layer(where, name, w, b, scale=scale, format='tf', quantize=quantize)
activation = conv.activation.__name__.upper()
except:
activation = "LINEAR"
return print_conv1d_layer(where, name, w, b, activation, format='tf')
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)

View file

@ -34,7 +34,7 @@ import numpy as np
from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer from wexchange.c_export import CWriter, print_gru_layer, print_dense_layer, print_conv1d_layer
def dump_torch_gru_weights(where, gru, name=None, input_sparse=False, dotp=False): def dump_torch_gru_weights(where, gru, name='gru', input_sparse=False, recurrent_sparse=False, quantize=False, scale=1/128, recurrent_scale=1/128):
assert gru.num_layers == 1 assert gru.num_layers == 1
assert gru.bidirectional == False assert gru.bidirectional == False
@ -45,7 +45,7 @@ def dump_torch_gru_weights(where, gru, name=None, input_sparse=False, dotp=False
b_hh = gru.bias_hh_l0.detach().cpu().numpy() b_hh = gru.bias_hh_l0.detach().cpu().numpy()
if isinstance(where, CWriter): if isinstance(where, CWriter):
return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, 'TANH', format='torch', reset_after=1, input_sparse=input_sparse, dotp=dotp) return print_gru_layer(where, name, w_ih, w_hh, b_ih, b_hh, format='torch', input_sparse=input_sparse, recurrent_sparse=recurrent_sparse, quantize=quantize, scale=scale, recurrent_scale=recurrent_scale)
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)
@ -73,7 +73,7 @@ def load_torch_gru_weights(where, gru):
gru.bias_hh_l0.set_(torch.from_numpy(b_hh)) gru.bias_hh_l0.set_(torch.from_numpy(b_hh))
def dump_torch_dense_weights(where, dense, name=None, activation="LINEAR"): def dump_torch_dense_weights(where, dense, name='dense', scale=1/128, sparse=False, diagonal=False, quantize=False):
w = dense.weight.detach().cpu().numpy() w = dense.weight.detach().cpu().numpy()
if dense.bias is None: if dense.bias is None:
@ -82,7 +82,7 @@ def dump_torch_dense_weights(where, dense, name=None, activation="LINEAR"):
b = dense.bias.detach().cpu().numpy() b = dense.bias.detach().cpu().numpy()
if isinstance(where, CWriter): if isinstance(where, CWriter):
return print_dense_layer(where, name, w, b, activation, format='torch') return print_dense_layer(where, name, w, b, scale=scale, format='torch', sparse=sparse, diagonal=diagonal, quantize=quantize)
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)
@ -102,7 +102,7 @@ def load_torch_dense_weights(where, dense):
dense.bias.set_(torch.from_numpy(b)) dense.bias.set_(torch.from_numpy(b))
def dump_torch_conv1d_weights(where, conv, name=None, activation="LINEAR"): def dump_torch_conv1d_weights(where, conv, name='conv', scale=1/128, quantize=False):
w = conv.weight.detach().cpu().numpy() w = conv.weight.detach().cpu().numpy()
if conv.bias is None: if conv.bias is None:
@ -112,7 +112,7 @@ def dump_torch_conv1d_weights(where, conv, name=None, activation="LINEAR"):
if isinstance(where, CWriter): if isinstance(where, CWriter):
return print_conv1d_layer(where, name, w, b, activation, format='torch') return print_conv1d_layer(where, name, w, b, scale=scale, format='torch', quantize=quantize)
else: else:
os.makedirs(where, exist_ok=True) os.makedirs(where, exist_ok=True)
@ -146,12 +146,12 @@ def load_torch_embedding_weights(where, emb):
with torch.no_grad(): with torch.no_grad():
emb.weight.set_(torch.from_numpy(w)) emb.weight.set_(torch.from_numpy(w))
def dump_torch_weights(where, module, name=None, activation="LINEAR", verbose=False, **kwargs): def dump_torch_weights(where, module, name=None, verbose=False, **kwargs):
""" generic function for dumping weights of some torch.nn.Module """ """ generic function for dumping weights of some torch.nn.Module """
if verbose and name is not None: if verbose and name is not None:
print(f"printing layer {name} of type {type(module)}...") print(f"printing layer {name} of type {type(module)}...")
if isinstance(module, torch.nn.Linear): if isinstance(module, torch.nn.Linear):
return dump_torch_dense_weights(where, module, name, activation, **kwargs) return dump_torch_dense_weights(where, module, name, **kwargs)
elif isinstance(module, torch.nn.GRU): elif isinstance(module, torch.nn.GRU):
return dump_torch_gru_weights(where, module, name, **kwargs) return dump_torch_gru_weights(where, module, name, **kwargs)
elif isinstance(module, torch.nn.Conv1d): elif isinstance(module, torch.nn.Conv1d):