mirror of
https://github.com/xiph/opus.git
synced 2025-05-23 03:39:17 +00:00
Computing signals in C
This commit is contained in:
parent
d75a4aec72
commit
ea02ef7e02
2 changed files with 53 additions and 64 deletions
|
@ -58,6 +58,9 @@ typedef struct {
|
||||||
float pitch_buf[PITCH_BUF_SIZE];
|
float pitch_buf[PITCH_BUF_SIZE];
|
||||||
float last_gain;
|
float last_gain;
|
||||||
int last_period;
|
int last_period;
|
||||||
|
float lpc[LPC_ORDER];
|
||||||
|
float sig_mem[LPC_ORDER];
|
||||||
|
int exc_mem;
|
||||||
} DenoiseState;
|
} DenoiseState;
|
||||||
|
|
||||||
static int rnnoise_get_size() {
|
static int rnnoise_get_size() {
|
||||||
|
@ -108,7 +111,6 @@ static void compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_c
|
||||||
int i;
|
int i;
|
||||||
float E = 0;
|
float E = 0;
|
||||||
float Ly[NB_BANDS];
|
float Ly[NB_BANDS];
|
||||||
float lpc[LPC_ORDER];
|
|
||||||
float p[WINDOW_SIZE];
|
float p[WINDOW_SIZE];
|
||||||
float pitch_buf[PITCH_BUF_SIZE];
|
float pitch_buf[PITCH_BUF_SIZE];
|
||||||
int pitch_index;
|
int pitch_index;
|
||||||
|
@ -150,7 +152,7 @@ static void compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_c
|
||||||
}
|
}
|
||||||
dct(features, Ly);
|
dct(features, Ly);
|
||||||
features[0] -= 4;
|
features[0] -= 4;
|
||||||
g = lpc_from_cepstrum(lpc, features);
|
g = lpc_from_cepstrum(st->lpc, features);
|
||||||
#if 0
|
#if 0
|
||||||
for (i=0;i<NB_BANDS;i++) printf("%f ", Ly[i]);
|
for (i=0;i<NB_BANDS;i++) printf("%f ", Ly[i]);
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
@ -158,7 +160,7 @@ static void compute_frame_features(DenoiseState *st, kiss_fft_cpx *X, kiss_fft_c
|
||||||
features[2*NB_BANDS] = .01*(pitch_index-200);
|
features[2*NB_BANDS] = .01*(pitch_index-200);
|
||||||
features[2*NB_BANDS+1] = gain;
|
features[2*NB_BANDS+1] = gain;
|
||||||
features[2*NB_BANDS+2] = log10(g);
|
features[2*NB_BANDS+2] = log10(g);
|
||||||
for (i=0;i<LPC_ORDER;i++) features[2*NB_BANDS+3+i] = lpc[i];
|
for (i=0;i<LPC_ORDER;i++) features[2*NB_BANDS+3+i] = st->lpc[i];
|
||||||
#if 0
|
#if 0
|
||||||
for (i=0;i<NB_FEATURES;i++) printf("%f ", features[i]);
|
for (i=0;i<NB_FEATURES;i++) printf("%f ", features[i]);
|
||||||
printf("\n");
|
printf("\n");
|
||||||
|
@ -198,6 +200,36 @@ static void rand_resp(float *a, float *b) {
|
||||||
b[1] = .75*uni_rand();
|
b[1] = .75*uni_rand();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void write_audio(DenoiseState *st, const short *pcm, float noise_std, FILE *file) {
|
||||||
|
int i;
|
||||||
|
unsigned char data[4*FRAME_SIZE];
|
||||||
|
for (i=0;i<FRAME_SIZE;i++) {
|
||||||
|
int noise;
|
||||||
|
float p=0;
|
||||||
|
float e;
|
||||||
|
int j;
|
||||||
|
for (j=0;j<LPC_ORDER;j++) p -= st->lpc[j]*st->sig_mem[j];
|
||||||
|
e = lin2ulaw(pcm[i] - p);
|
||||||
|
/* Signal. */
|
||||||
|
data[4*i] = lin2ulaw(st->sig_mem[0]);
|
||||||
|
/* Prediction. */
|
||||||
|
data[4*i+1] = lin2ulaw(p);
|
||||||
|
/* Excitation in. */
|
||||||
|
data[4*i+2] = st->exc_mem;
|
||||||
|
/* Excitation out. */
|
||||||
|
data[4*i+3] = e;
|
||||||
|
/* Simulate error on excitation. */
|
||||||
|
noise = (int)floor(.5 + noise_std*.707*(log((float)rand()/RAND_MAX)-log((float)rand()/RAND_MAX)));
|
||||||
|
e += noise;
|
||||||
|
e = IMIN(255, IMAX(0, e));
|
||||||
|
|
||||||
|
RNN_MOVE(&st->sig_mem[1], &st->sig_mem[0], LPC_ORDER-1);
|
||||||
|
st->sig_mem[0] = p + ulaw2lin(e);
|
||||||
|
st->exc_mem = e;
|
||||||
|
}
|
||||||
|
fwrite(data, 4*FRAME_SIZE, 1, file);
|
||||||
|
}
|
||||||
|
|
||||||
int main(int argc, char **argv) {
|
int main(int argc, char **argv) {
|
||||||
int i;
|
int i;
|
||||||
int count=0;
|
int count=0;
|
||||||
|
@ -221,6 +253,7 @@ int main(int argc, char **argv) {
|
||||||
float old_speech_gain = 1;
|
float old_speech_gain = 1;
|
||||||
int one_pass_completed = 0;
|
int one_pass_completed = 0;
|
||||||
DenoiseState *st;
|
DenoiseState *st;
|
||||||
|
float noise_std=0;
|
||||||
int training = -1;
|
int training = -1;
|
||||||
st = rnnoise_create();
|
st = rnnoise_create();
|
||||||
if (argc == 5 && strcmp(argv[1], "-train")==0) training = 1;
|
if (argc == 5 && strcmp(argv[1], "-train")==0) training = 1;
|
||||||
|
@ -287,6 +320,7 @@ int main(int argc, char **argv) {
|
||||||
if (rand()%100==0) speech_gain = 0;
|
if (rand()%100==0) speech_gain = 0;
|
||||||
gain_change_count = 0;
|
gain_change_count = 0;
|
||||||
rand_resp(a_sig, b_sig);
|
rand_resp(a_sig, b_sig);
|
||||||
|
noise_std = 3*(float)rand()/RAND_MAX;
|
||||||
}
|
}
|
||||||
biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
|
biquad(x, mem_hp_x, x, b_hp, a_hp, FRAME_SIZE);
|
||||||
biquad(x, mem_resp_x, x, b_sig, a_sig, FRAME_SIZE);
|
biquad(x, mem_resp_x, x, b_sig, a_sig, FRAME_SIZE);
|
||||||
|
@ -302,7 +336,8 @@ int main(int argc, char **argv) {
|
||||||
fwrite(features, sizeof(float), NB_FEATURES, ffeat);
|
fwrite(features, sizeof(float), NB_FEATURES, ffeat);
|
||||||
/* PCM is delayed by 1/2 frame to make the features centered on the frames. */
|
/* PCM is delayed by 1/2 frame to make the features centered on the frames. */
|
||||||
for (i=0;i<FRAME_SIZE-TRAINING_OFFSET;i++) pcm[i+TRAINING_OFFSET] = float2short(x[i]);
|
for (i=0;i<FRAME_SIZE-TRAINING_OFFSET;i++) pcm[i+TRAINING_OFFSET] = float2short(x[i]);
|
||||||
if (fpcm) fwrite(pcm, sizeof(short), FRAME_SIZE, fpcm);
|
if (fpcm) write_audio(st, pcm, noise_std, fpcm);
|
||||||
|
//if (fpcm) fwrite(pcm, sizeof(short), FRAME_SIZE, fpcm);
|
||||||
for (i=0;i<TRAINING_OFFSET;i++) pcm[i] = float2short(x[i+FRAME_SIZE-TRAINING_OFFSET]);
|
for (i=0;i<TRAINING_OFFSET;i++) pcm[i] = float2short(x[i+FRAME_SIZE-TRAINING_OFFSET]);
|
||||||
old_speech_gain = speech_gain;
|
old_speech_gain = speech_gain;
|
||||||
count++;
|
count++;
|
||||||
|
|
|
@ -66,85 +66,39 @@ pcm_chunk_size = frame_size*feature_chunk_size
|
||||||
|
|
||||||
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
||||||
|
|
||||||
udata = np.fromfile(pcm_file, dtype='int16')
|
data = np.fromfile(pcm_file, dtype='uint8')
|
||||||
data = lin2ulaw(udata)
|
nb_frames = len(data)//(4*pcm_chunk_size)
|
||||||
nb_frames = len(data)//pcm_chunk_size
|
|
||||||
|
|
||||||
features = np.fromfile(feature_file, dtype='float32')
|
features = np.fromfile(feature_file, dtype='float32')
|
||||||
|
|
||||||
# limit to discrete number of frames
|
# limit to discrete number of frames
|
||||||
data = data[:nb_frames*pcm_chunk_size]
|
data = data[:nb_frames*4*pcm_chunk_size]
|
||||||
udata = udata[:nb_frames*pcm_chunk_size]
|
|
||||||
features = features[:nb_frames*feature_chunk_size*nb_features]
|
features = features[:nb_frames*feature_chunk_size*nb_features]
|
||||||
|
|
||||||
# Noise injection: the idea is that the real system is going to be
|
|
||||||
# predicting samples based on previously predicted samples rather than
|
|
||||||
# from the original. Since the previously predicted samples aren't
|
|
||||||
# expected to be so good, I add noise to the training data. Exactly
|
|
||||||
# how the noise is added makes a huge difference
|
|
||||||
|
|
||||||
in_data = np.concatenate([data[0:1], data[:-1]]);
|
|
||||||
noise = np.concatenate([np.zeros((len(data)*1//5)), np.random.randint(-3, 3, len(data)*1//5), np.random.randint(-2, 2, len(data)*1//5), np.random.randint(-1, 1, len(data)*2//5)])
|
|
||||||
#noise = np.round(np.concatenate([np.zeros((len(data)*1//5)), np.random.laplace(0, 1.2, len(data)*1//5), np.random.laplace(0, .77, len(data)*1//5), np.random.laplace(0, .33, len(data)*1//5), np.random.randint(-1, 1, len(data)*1//5)]))
|
|
||||||
del data
|
|
||||||
in_data = in_data + noise
|
|
||||||
del noise
|
|
||||||
in_data = np.clip(in_data, 0, 255)
|
|
||||||
|
|
||||||
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames*feature_chunk_size, nb_features))
|
||||||
|
|
||||||
# Note: the LPC predictor output is now calculated by the loop below, this code was
|
sig = np.reshape(data[0::4], (nb_frames, pcm_chunk_size, 1))
|
||||||
# for an ealier version that implemented the prediction filter in C
|
pred = np.reshape(data[1::4], (nb_frames, pcm_chunk_size, 1))
|
||||||
|
in_exc = np.reshape(data[2::4], (nb_frames, pcm_chunk_size, 1))
|
||||||
upred = np.zeros((nb_frames*pcm_chunk_size,), dtype='float32')
|
out_exc = np.reshape(data[3::4], (nb_frames, pcm_chunk_size, 1))
|
||||||
|
del data
|
||||||
# Use 16th order LPC to generate LPC prediction output upred[] and (in
|
|
||||||
# mu-law form) pred[]
|
|
||||||
|
|
||||||
pred_in = ulaw2lin(in_data)
|
|
||||||
for i in range(2, nb_frames*feature_chunk_size):
|
|
||||||
upred[i*frame_size:(i+1)*frame_size] = 0
|
|
||||||
for k in range(16):
|
|
||||||
upred[i*frame_size:(i+1)*frame_size] = upred[i*frame_size:(i+1)*frame_size] - \
|
|
||||||
pred_in[i*frame_size-k:(i+1)*frame_size-k]*features[i, nb_features-16+k]
|
|
||||||
del pred_in
|
|
||||||
|
|
||||||
pred = lin2ulaw(upred)
|
|
||||||
|
|
||||||
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
|
|
||||||
in_data = in_data.astype('uint8')
|
|
||||||
|
|
||||||
# LPC residual, which is the difference between the input speech and
|
|
||||||
# the predictor output, with a slight time shift this is also the
|
|
||||||
# ideal excitation in_exc
|
|
||||||
|
|
||||||
out_data = lin2ulaw(udata-upred)
|
|
||||||
del upred
|
|
||||||
del udata
|
|
||||||
in_exc = np.concatenate([out_data[0:1], out_data[:-1]]);
|
|
||||||
|
|
||||||
out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1))
|
|
||||||
out_data = out_data.astype('uint8')
|
|
||||||
|
|
||||||
in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1))
|
|
||||||
in_exc = in_exc.astype('uint8')
|
|
||||||
|
|
||||||
|
print("ulaw std = ", np.std(out_exc))
|
||||||
|
|
||||||
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
|
||||||
features = features[:, :, :nb_used_features]
|
features = features[:, :, :nb_used_features]
|
||||||
features[:,:,18:36] = 0
|
features[:,:,18:36] = 0
|
||||||
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
|
|
||||||
pred = pred.astype('uint8')
|
|
||||||
|
|
||||||
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
periods = (.1 + 50*features[:,:,36:37]+100).astype('int16')
|
||||||
|
|
||||||
in_data = np.concatenate([in_data, pred], axis=-1)
|
in_data = np.concatenate([sig, pred], axis=-1)
|
||||||
|
|
||||||
|
del sig
|
||||||
del pred
|
del pred
|
||||||
|
|
||||||
# dump models to disk as we go
|
# dump models to disk as we go
|
||||||
checkpoint = ModelCheckpoint('lpcnet15_384_10_G16_{epoch:02d}.h5')
|
checkpoint = ModelCheckpoint('lpcnet18_384_10_G16_{epoch:02d}.h5')
|
||||||
|
|
||||||
#model.load_weights('lpcnet9b_384_10_G16_01.h5')
|
model.load_weights('lpcnet9b_384_10_G16_01.h5')
|
||||||
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||||
model.fit([in_data, in_exc, features, periods], out_data, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.1, 0.1, 0.1))])
|
model.fit([in_data, in_exc, features, periods], out_exc, batch_size=batch_size, epochs=nb_epochs, validation_split=0.0, callbacks=[checkpoint, lpcnet.Sparsify(2000, 40000, 400, (0.1, 0.1, 0.1))])
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue