Faster activation functions for AVX

Using rational function approximation for tanh() and sigmoid.
This commit is contained in:
Jean-Marc Valin 2021-06-29 04:05:48 -04:00
parent 5571ef1b8e
commit e35441f2cc
3 changed files with 220 additions and 13 deletions

70
dnn/training_tf2/pade.py Normal file
View file

@ -0,0 +1,70 @@
# Optimizing a rational function to optimize a tanh() approximation
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation
import tensorflow.keras.backend as K
from tensorflow.keras.optimizers import Adam, SGD
def my_loss1(y_true, y_pred):
return 1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1)
def my_loss2(y_true, y_pred):
return .1*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1)
def my_loss3(y_true, y_pred):
return .01*K.mean(K.square(y_true-y_pred)) + 1*K.max(K.square(y_true-y_pred), axis=1)
# Using these initializers to seed the approximation
# with a reasonable starting point
def num_init(shape, dtype=None):
rr = tf.constant([[945], [105], [1]], dtype=dtype)
#rr = tf.constant([[946.56757], [98.01368], [0.66841]], dtype=dtype)
print(rr)
return rr
def den_init(shape, dtype=None):
rr = tf.constant([[945], [420], [15]], dtype=dtype)
#rr = tf.constant([[946.604], [413.342], [12.465]], dtype=dtype)
print(rr)
return rr
x = np.arange(-10, 10, .01)
N = len(x)
x = np.reshape(x, (1, -1, 1))
x2 = x*x
x2in = np.concatenate([x2*0 + 1, x2, x2*x2], axis=2)
yout = np.tanh(x)
model_x = Input(shape=(None, 1,))
model_x2 = Input(shape=(None, 3,))
num = Dense(1, name='num', use_bias=False, kernel_initializer=num_init)
den = Dense(1, name='den', use_bias=False, kernel_initializer=den_init)
def ratio(x):
return tf.minimum(1., tf.maximum(-1., x[0]*x[1]/x[2]))
out_layer = Lambda(ratio)
output = out_layer([model_x, num(model_x2), den(model_x2)])
model = Model([model_x, model_x2], output)
model.summary()
model.compile(Adam(0.05, beta_1=0.9, beta_2=0.9, decay=2e-5), loss='mean_squared_error')
model.fit([x, x2in], yout, batch_size=1, epochs=500000, validation_split=0.0)
model.compile(Adam(0.001, beta_2=0.9, decay=1e-4), loss=my_loss1)
model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0)
model.compile(Adam(0.0001, beta_2=0.9, decay=1e-4), loss=my_loss2)
model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0)
model.compile(Adam(0.00001, beta_2=0.9, decay=1e-4), loss=my_loss3)
model.fit([x, x2in], yout, batch_size=1, epochs=50000, validation_split=0.0)
model.save_weights('tanh.h5')