diff --git a/dnn/dump_data.c b/dnn/dump_data.c index 1db653d0..1d8f6b3c 100644 --- a/dnn/dump_data.c +++ b/dnn/dump_data.c @@ -313,7 +313,7 @@ int main(int argc, char **argv) { } last_silent = silent; } - if (count>=5000000 && one_pass_completed) break; + if (count*FRAME_SIZE_5MS>=10000000 && one_pass_completed) break; if (training && ++gain_change_count > 2821) { float tmp; speech_gain = pow(10., (-20+(rand()%40))/20.); diff --git a/dnn/lpcnet.py b/dnn/lpcnet.py index 532adc8e..6b1adf64 100644 --- a/dnn/lpcnet.py +++ b/dnn/lpcnet.py @@ -36,6 +36,7 @@ import numpy as np import h5py import sys +frame_size = 160 pcm_bits = 8 embed_size = 128 pcm_levels = 2**pcm_bits @@ -139,7 +140,7 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_g cfeat = fdense2(fdense1(cfeat)) - rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) + rep = Lambda(lambda x: K.repeat_elements(x, frame_size, 1)) if use_gpu: rnn = CuDNNGRU(rnn_units1, return_sequences=True, return_state=True, name='gru_a') @@ -158,6 +159,7 @@ def new_lpcnet_model(rnn_units1=384, rnn_units2=16, nb_used_features = 38, use_g model.rnn_units1 = rnn_units1 model.rnn_units2 = rnn_units2 model.nb_used_features = nb_used_features + model.frame_size = frame_size encoder = Model([feat, pitch], cfeat) diff --git a/dnn/test_lpcnet.py b/dnn/test_lpcnet.py index 842ce56a..b7a57c3e 100755 --- a/dnn/test_lpcnet.py +++ b/dnn/test_lpcnet.py @@ -47,7 +47,7 @@ model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics= feature_file = sys.argv[1] out_file = sys.argv[2] -frame_size = 160 +frame_size = model.frame_size nb_features = 55 nb_used_features = model.nb_used_features diff --git a/dnn/train_lpcnet.py b/dnn/train_lpcnet.py index c3b64ff7..9d1fb181 100755 --- a/dnn/train_lpcnet.py +++ b/dnn/train_lpcnet.py @@ -58,7 +58,7 @@ model.summary() feature_file = sys.argv[1] pcm_file = sys.argv[2] # 16 bit unsigned short PCM samples -frame_size = 160 +frame_size = model.frame_size nb_features = 55 nb_used_features = model.nb_used_features feature_chunk_size = 15 @@ -97,7 +97,7 @@ del sig del pred # dump models to disk as we go -checkpoint = ModelCheckpoint('lpcnet20c_384_10_G16_{epoch:02d}.h5') +checkpoint = ModelCheckpoint('lpcnet20g_384_10_G16_{epoch:02d}.h5') #model.load_weights('lpcnet9b_384_10_G16_01.h5') model.compile(optimizer=Adam(0.001, amsgrad=True, decay=5e-5), loss='sparse_categorical_crossentropy')