updated moc method

This commit is contained in:
Jan Buethe 2023-11-02 16:52:50 +01:00
parent feb3282887
commit da60266f6e
No known key found for this signature in database
GPG key ID: 9E32027A35B36314

View file

@ -1,6 +1,38 @@
import numpy as np import numpy as np
import scipy.signal import scipy.signal
def compute_vad_mask(x, fs, stop_db=-70):
frame_length = (fs + 49) // 50
x = x[: frame_length * (len(x) // frame_length)]
frames = x.reshape(-1, frame_length)
frame_energy = np.sum(frames ** 2, axis=1)
frame_energy_smooth = np.convolve(frame_energy, np.ones(5) / 5, mode='same')
max_threshold = frame_energy.max() * 10 ** (stop_db/20)
vactive = np.ones_like(frames)
vactive[frame_energy_smooth < max_threshold, :] = 0
vactive = vactive.reshape(-1)
filter = np.sin(np.arange(frame_length) * np.pi / (frame_length - 1))
filter = filter / filter.sum()
mask = np.convolve(vactive, filter, mode='same')
return x, mask
def convert_mask(mask, num_frames, frame_size=160, hop_size=40):
num_samples = frame_size + (num_frames - 1) * hop_size
if len(mask) < num_samples:
mask = np.concatenate((mask, np.zeros(num_samples - len(mask))), dtype=mask.dtype)
else:
mask = mask[:num_samples]
new_mask = np.array([np.mean(mask[i*hop_size : i*hop_size + frame_size]) for i in range(num_frames)])
return new_mask
def power_spectrum(x, window_size=160, hop_size=40, window='hamming'): def power_spectrum(x, window_size=160, hop_size=40, window='hamming'):
num_spectra = (len(x) - window_size - hop_size) // hop_size num_spectra = (len(x) - window_size - hop_size) // hop_size
window = scipy.signal.get_window(window, window_size) window = scipy.signal.get_window(window, window_size)
@ -36,7 +68,7 @@ def rect_fb(band_limits, num_bins=None):
return fb return fb
def compare(x, y): def compare(x, y, apply_vad=False):
""" Modified version of opus_compare for 16 kHz mono signals """ Modified version of opus_compare for 16 kHz mono signals
Args: Args:
@ -84,7 +116,38 @@ def compare(x, y):
re = masked_psd_y / masked_psd_x re = masked_psd_y / masked_psd_x
im = re - np.log(re) - 1 im = re - np.log(re) - 1
Eb = ((im @ fb.T) / np.sum(fb, axis=1)) Eb = ((im @ fb.T) / np.sum(fb, axis=1))
Ef = np.mean(Eb ** 2, axis=1) Ef = np.mean(Eb , axis=1)
err = np.mean(Ef ** 4, axis=0) ** (1/16)
if apply_vad:
_, mask = compute_vad_mask(x, 16000)
mask = convert_mask(mask, Ef.shape[0])
else:
mask = np.ones_like(Ef)
err = np.mean(np.abs(Ef[mask > 1e-6]) ** 3) ** (1/6)
return float(err) return float(err)
if __name__ == "__main__":
import argparse
from scipy.io import wavfile
parser = argparse.ArgumentParser()
parser.add_argument('ref', type=str, help='reference wav file')
parser.add_argument('deg', type=str, help='degraded wav file')
parser.add_argument('--apply-vad', action='store_true')
args = parser.parse_args()
fs1, x = wavfile.read(args.ref)
fs2, y = wavfile.read(args.deg)
if max(fs1, fs2) != 16000:
raise ValueError('error: encountered sampling frequency diffrent from 16kHz')
x = x.astype(np.float32) / 2**15
y = y.astype(np.float32) / 2**15
err = compare(x, y, apply_vad=args.apply_vad)
print(f"MOC: {err}")