Make loss simulator standalone
This commit is contained in:
parent
bd710e97f3
commit
caca188b5a
3 changed files with 57 additions and 6 deletions
|
@ -6,7 +6,53 @@
|
|||
#include "lossgen.h"
|
||||
#include "os_support.h"
|
||||
#include "nnet.h"
|
||||
#include "lpcnet_private.h"
|
||||
|
||||
/* Disable RTCD for this. */
|
||||
#define RTCD_ARCH c
|
||||
|
||||
#include "nnet_arch.h"
|
||||
|
||||
#define MAX_RNN_NEURONS_ALL IMAX(LOSSGEN_GRU1_STATE_SIZE, LOSSGEN_GRU2_STATE_SIZE)
|
||||
|
||||
/* These two functions are copied from nnet.c to make sure we don't have linking issues. */
|
||||
void compute_generic_gru_lossgen(const LinearLayer *input_weights, const LinearLayer *recurrent_weights, float *state, const float *in, int arch)
|
||||
{
|
||||
int i;
|
||||
int N;
|
||||
float zrh[3*MAX_RNN_NEURONS_ALL];
|
||||
float recur[3*MAX_RNN_NEURONS_ALL];
|
||||
float *z;
|
||||
float *r;
|
||||
float *h;
|
||||
celt_assert(3*recurrent_weights->nb_inputs == recurrent_weights->nb_outputs);
|
||||
celt_assert(input_weights->nb_outputs == recurrent_weights->nb_outputs);
|
||||
N = recurrent_weights->nb_inputs;
|
||||
z = zrh;
|
||||
r = &zrh[N];
|
||||
h = &zrh[2*N];
|
||||
celt_assert(recurrent_weights->nb_outputs <= 3*MAX_RNN_NEURONS_ALL);
|
||||
celt_assert(in != state);
|
||||
compute_linear(input_weights, zrh, in, arch);
|
||||
compute_linear(recurrent_weights, recur, state, arch);
|
||||
for (i=0;i<2*N;i++)
|
||||
zrh[i] += recur[i];
|
||||
compute_activation(zrh, zrh, 2*N, ACTIVATION_SIGMOID, arch);
|
||||
for (i=0;i<N;i++)
|
||||
h[i] += recur[2*N+i]*r[i];
|
||||
compute_activation(h, h, N, ACTIVATION_TANH, arch);
|
||||
for (i=0;i<N;i++)
|
||||
h[i] = z[i]*state[i] + (1-z[i])*h[i];
|
||||
for (i=0;i<N;i++)
|
||||
state[i] = h[i];
|
||||
}
|
||||
|
||||
|
||||
void compute_generic_dense_lossgen(const LinearLayer *layer, float *output, const float *input, int activation, int arch)
|
||||
{
|
||||
compute_linear(layer, output, input, arch);
|
||||
compute_activation(output, output, layer->nb_outputs, activation, arch);
|
||||
}
|
||||
|
||||
|
||||
int sample_loss(
|
||||
LossGenState *st,
|
||||
|
@ -21,10 +67,10 @@ int sample_loss(
|
|||
LossGen *model = &st->model;
|
||||
input[0] = st->last_loss;
|
||||
input[1] = percent_loss;
|
||||
compute_generic_dense(&model->lossgen_dense_in, tmp, input, ACTIVATION_TANH, arch);
|
||||
compute_generic_gru(&model->lossgen_gru1_input, &model->lossgen_gru1_recurrent, st->gru1_state, tmp, arch);
|
||||
compute_generic_gru(&model->lossgen_gru2_input, &model->lossgen_gru2_recurrent, st->gru2_state, st->gru1_state, arch);
|
||||
compute_generic_dense(&model->lossgen_dense_out, &out, st->gru2_state, ACTIVATION_SIGMOID, arch);
|
||||
compute_generic_dense_lossgen(&model->lossgen_dense_in, tmp, input, ACTIVATION_TANH, arch);
|
||||
compute_generic_gru_lossgen(&model->lossgen_gru1_input, &model->lossgen_gru1_recurrent, st->gru1_state, tmp, arch);
|
||||
compute_generic_gru_lossgen(&model->lossgen_gru2_input, &model->lossgen_gru2_recurrent, st->gru2_state, st->gru1_state, arch);
|
||||
compute_generic_dense_lossgen(&model->lossgen_dense_out, &out, st->gru2_state, ACTIVATION_SIGMOID, arch);
|
||||
loss = (float)rand()/RAND_MAX < out;
|
||||
st->last_loss = loss;
|
||||
return loss;
|
||||
|
@ -41,6 +87,7 @@ void lossgen_init(LossGenState *st)
|
|||
ret = 0;
|
||||
#endif
|
||||
celt_assert(ret == 0);
|
||||
(void)ret;
|
||||
}
|
||||
|
||||
int lossgen_load_model(LossGenState *st, const unsigned char *data, int len) {
|
||||
|
@ -59,6 +106,10 @@ int main(int argc, char **argv) {
|
|||
int i, N;
|
||||
float p;
|
||||
LossGenState st;
|
||||
if (argc!=3) {
|
||||
fprintf(stderr, "usage: lossgen <percentage> <length>\n");
|
||||
return 1;
|
||||
}
|
||||
lossgen_init(&st);
|
||||
p = atof(argv[1]);
|
||||
N = atoi(argv[2]);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue