mirror of
https://github.com/xiph/opus.git
synced 2025-05-25 04:39:13 +00:00
Adding feature prediction (totally untested)
This commit is contained in:
parent
42cbb9ed07
commit
c8cbfa7e9b
3 changed files with 327 additions and 0 deletions
100
dnn/training_tf2/lpcnet_plc.py
Normal file
100
dnn/training_tf2/lpcnet_plc.py
Normal file
|
@ -0,0 +1,100 @@
|
||||||
|
#!/usr/bin/python3
|
||||||
|
'''Copyright (c) 2021-2022 Amazon
|
||||||
|
Copyright (c) 2018-2019 Mozilla
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions
|
||||||
|
are met:
|
||||||
|
|
||||||
|
- Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
- Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
'''
|
||||||
|
|
||||||
|
import math
|
||||||
|
import tensorflow as tf
|
||||||
|
from tensorflow.keras.models import Model
|
||||||
|
from tensorflow.keras.layers import Input, GRU, Dense, Embedding, Reshape, Concatenate, Lambda, Conv1D, Multiply, Add, Bidirectional, MaxPooling1D, Activation, GaussianNoise
|
||||||
|
from tensorflow.compat.v1.keras.layers import CuDNNGRU
|
||||||
|
from tensorflow.keras import backend as K
|
||||||
|
from tensorflow.keras.constraints import Constraint
|
||||||
|
from tensorflow.keras.initializers import Initializer
|
||||||
|
from tensorflow.keras.callbacks import Callback
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def quant_regularizer(x):
|
||||||
|
Q = 128
|
||||||
|
Q_1 = 1./Q
|
||||||
|
#return .01 * tf.reduce_mean(1 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x))))
|
||||||
|
return .01 * tf.reduce_mean(K.sqrt(K.sqrt(1.0001 - tf.math.cos(2*3.1415926535897931*(Q*x-tf.round(Q*x))))))
|
||||||
|
|
||||||
|
|
||||||
|
class WeightClip(Constraint):
|
||||||
|
'''Clips the weights incident to each hidden unit to be inside a range
|
||||||
|
'''
|
||||||
|
def __init__(self, c=2):
|
||||||
|
self.c = c
|
||||||
|
|
||||||
|
def __call__(self, p):
|
||||||
|
# Ensure that abs of adjacent weights don't sum to more than 127. Otherwise there's a risk of
|
||||||
|
# saturation when implementing dot products with SSSE3 or AVX2.
|
||||||
|
return self.c*p/tf.maximum(self.c, tf.repeat(tf.abs(p[:, 1::2])+tf.abs(p[:, 0::2]), 2, axis=1))
|
||||||
|
#return K.clip(p, -self.c, self.c)
|
||||||
|
|
||||||
|
def get_config(self):
|
||||||
|
return {'name': self.__class__.__name__,
|
||||||
|
'c': self.c}
|
||||||
|
|
||||||
|
constraint = WeightClip(0.992)
|
||||||
|
|
||||||
|
def new_lpcnet_plc_model(rnn_units=256, nb_used_features=20, batch_size=128, training=False, adaptation=False, quantize=False, cond_size=128):
|
||||||
|
feat = Input(shape=(None, nb_used_features), batch_size=batch_size)
|
||||||
|
lost = Input(shape=(None, 1), batch_size=batch_size)
|
||||||
|
|
||||||
|
fdense1 = Dense(cond_size, activation='tanh', name='plc_dense1')
|
||||||
|
|
||||||
|
cfeat = Concatenate()([feat, lost])
|
||||||
|
cfeat = fdense1(cfeat)
|
||||||
|
#cfeat = Conv1D(cond_size, 3, padding='causal', activation='tanh', name='plc_conv1')(cfeat)
|
||||||
|
|
||||||
|
quant = quant_regularizer if quantize else None
|
||||||
|
|
||||||
|
if training:
|
||||||
|
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru1', stateful=True,
|
||||||
|
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||||
|
rnn2 = CuDNNGRU(rnn_units, return_sequences=True, return_state=True, name='plc_gru2', stateful=True,
|
||||||
|
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||||
|
else:
|
||||||
|
rnn = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru1', stateful=True,
|
||||||
|
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||||
|
rnn2 = GRU(rnn_units, return_sequences=True, return_state=True, recurrent_activation="sigmoid", reset_after='true', name='plc_gru2', stateful=True,
|
||||||
|
kernel_constraint=constraint, recurrent_constraint = constraint, kernel_regularizer=quant, recurrent_regularizer=quant)
|
||||||
|
|
||||||
|
gru_out1, _ = rnn(cfeat)
|
||||||
|
gru_out1 = GaussianNoise(.005)(gru_out1)
|
||||||
|
gru_out2, _ = rnn2(gru_out1)
|
||||||
|
|
||||||
|
out_dense = Dense(nb_used_features, activation='linear', name='plc_out')
|
||||||
|
plc_out = out_dense(gru_out2)
|
||||||
|
|
||||||
|
model = Model([feat, lost], plc_out)
|
||||||
|
model.rnn_units = rnn_units
|
||||||
|
model.cond_size = cond_size
|
||||||
|
model.nb_used_features = nb_used_features
|
||||||
|
|
||||||
|
return model
|
54
dnn/training_tf2/plc_loader.py
Normal file
54
dnn/training_tf2/plc_loader.py
Normal file
|
@ -0,0 +1,54 @@
|
||||||
|
#!/usr/bin/python3
|
||||||
|
'''Copyright (c) 2021-2022 Amazon
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions
|
||||||
|
are met:
|
||||||
|
|
||||||
|
- Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
- Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
'''
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow.keras.utils import Sequence
|
||||||
|
|
||||||
|
class PLCLoader(Sequence):
|
||||||
|
def __init__(self, features, batch_size):
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.nb_batches = features.shape[0]//self.batch_size
|
||||||
|
self.features = features[:self.nb_batches*self.batch_size, :]
|
||||||
|
self.on_epoch_end()
|
||||||
|
|
||||||
|
def on_epoch_end(self):
|
||||||
|
self.indices = np.arange(self.nb_batches*self.batch_size)
|
||||||
|
np.random.shuffle(self.indices)
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
features = self.features[self.indices[index*self.batch_size:(index+1)*self.batch_size], :, :]
|
||||||
|
lost = (np.random.rand(features.shape[0], features.shape[1]) > .2).astype('float')
|
||||||
|
lost = np.reshape(lost, (features.shape[0], features.shape[1], 1))
|
||||||
|
lost_mask = np.tile(lost, (1,1,features.shape[2]))
|
||||||
|
|
||||||
|
out_features = np.concatenate([features, 1.-lost], axis=-1)
|
||||||
|
inputs = [features*lost_mask, lost]
|
||||||
|
outputs = [out_features]
|
||||||
|
return (inputs, outputs)
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.nb_batches
|
173
dnn/training_tf2/train_plc.py
Normal file
173
dnn/training_tf2/train_plc.py
Normal file
|
@ -0,0 +1,173 @@
|
||||||
|
#!/usr/bin/python3
|
||||||
|
'''Copyright (c) 2021-2022 Amazon
|
||||||
|
Copyright (c) 2018-2019 Mozilla
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions
|
||||||
|
are met:
|
||||||
|
|
||||||
|
- Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
- Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||||
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
'''
|
||||||
|
|
||||||
|
# Train an LPCNet model
|
||||||
|
|
||||||
|
import argparse
|
||||||
|
from plc_loader import PLCLoader
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description='Train a PLC model')
|
||||||
|
|
||||||
|
parser.add_argument('features', metavar='<features file>', help='binary features file (float32)')
|
||||||
|
parser.add_argument('output', metavar='<output>', help='trained model file (.h5)')
|
||||||
|
parser.add_argument('--model', metavar='<model>', default='lpcnet_plc', help='PLC model python definition (without .py)')
|
||||||
|
group1 = parser.add_mutually_exclusive_group()
|
||||||
|
group1.add_argument('--quantize', metavar='<input weights>', help='quantize model')
|
||||||
|
group1.add_argument('--retrain', metavar='<input weights>', help='continue training model')
|
||||||
|
parser.add_argument('--gru-size', metavar='<units>', default=256, type=int, help='number of units in GRU (default 256)')
|
||||||
|
parser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network (default 128)')
|
||||||
|
parser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)')
|
||||||
|
parser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)')
|
||||||
|
parser.add_argument('--seq-length', metavar='<sequence length>', default=1000, type=int, help='sequence length to use (default 1000)')
|
||||||
|
parser.add_argument('--lr', metavar='<learning rate>', type=float, help='learning rate')
|
||||||
|
parser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay')
|
||||||
|
parser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files')
|
||||||
|
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
import importlib
|
||||||
|
lpcnet = importlib.import_module(args.model)
|
||||||
|
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
from tensorflow.keras.optimizers import Adam
|
||||||
|
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
|
||||||
|
import tensorflow.keras.backend as K
|
||||||
|
import h5py
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
#gpus = tf.config.experimental.list_physical_devices('GPU')
|
||||||
|
#if gpus:
|
||||||
|
# try:
|
||||||
|
# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
|
||||||
|
# except RuntimeError as e:
|
||||||
|
# print(e)
|
||||||
|
|
||||||
|
nb_epochs = args.epochs
|
||||||
|
|
||||||
|
# Try reducing batch_size if you run out of memory on your GPU
|
||||||
|
batch_size = args.batch_size
|
||||||
|
|
||||||
|
quantize = args.quantize is not None
|
||||||
|
retrain = args.retrain is not None
|
||||||
|
|
||||||
|
if quantize:
|
||||||
|
lr = 0.00003
|
||||||
|
decay = 0
|
||||||
|
input_model = args.quantize
|
||||||
|
else:
|
||||||
|
lr = 0.001
|
||||||
|
decay = 2.5e-5
|
||||||
|
|
||||||
|
if args.lr is not None:
|
||||||
|
lr = args.lr
|
||||||
|
|
||||||
|
if args.decay is not None:
|
||||||
|
decay = args.decay
|
||||||
|
|
||||||
|
if retrain:
|
||||||
|
input_model = args.retrain
|
||||||
|
|
||||||
|
def plc_loss(alpha=1.0):
|
||||||
|
def loss(y_true,y_pred):
|
||||||
|
mask = y_true[:,:,-1:]
|
||||||
|
y_true = y_true[:,:,:-1]
|
||||||
|
e = (y_true - y_pred)*mask
|
||||||
|
e_bands = tf.signal.idct(e, norm='ortho')
|
||||||
|
l1_loss = K.mean(K.abs(e) + alpha*K.abs(e_bands))
|
||||||
|
return l1_loss
|
||||||
|
return loss
|
||||||
|
|
||||||
|
def plc_l1_loss():
|
||||||
|
def L1_loss(y_true,y_pred):
|
||||||
|
mask = y_true[:,:,-1:]
|
||||||
|
y_true = y_true[:,:,:-1]
|
||||||
|
e = (y_true - y_pred)*mask
|
||||||
|
l1_loss = K.mean(K.abs(e))
|
||||||
|
return l1_loss
|
||||||
|
return L1_loss
|
||||||
|
|
||||||
|
def plc_band_loss():
|
||||||
|
def L1_band_loss(y_true,y_pred):
|
||||||
|
mask = y_true[:,:,-1:]
|
||||||
|
y_true = y_true[:,:,:-1]
|
||||||
|
e = (y_true - y_pred)*mask
|
||||||
|
e_bands = tf.signal.idct(e, norm='ortho')
|
||||||
|
l1_loss = K.mean(K.abs(e_bands))
|
||||||
|
return l1_loss
|
||||||
|
return L1_band_loss
|
||||||
|
|
||||||
|
opt = Adam(lr, decay=decay, beta_2=0.99)
|
||||||
|
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
|
||||||
|
|
||||||
|
with strategy.scope():
|
||||||
|
model = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=batch_size, training=True, quantize=quantize, cond_size=args.cond_size)
|
||||||
|
model.compile(optimizer=opt, loss=plc_loss(alpha=1.), metrics=[plc_l1_loss(), plc_band_loss()])
|
||||||
|
model.summary()
|
||||||
|
|
||||||
|
lpc_order = 16
|
||||||
|
|
||||||
|
feature_file = args.features
|
||||||
|
nb_features = model.nb_used_features + lpc_order
|
||||||
|
nb_used_features = model.nb_used_features
|
||||||
|
sequence_size = args.seq_length
|
||||||
|
|
||||||
|
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
||||||
|
|
||||||
|
|
||||||
|
features = np.memmap(feature_file, dtype='float32', mode='r')
|
||||||
|
nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size
|
||||||
|
features = features[:nb_sequences*sequence_size*nb_features]
|
||||||
|
|
||||||
|
features = np.reshape(features, (nb_sequences, sequence_size, nb_features))
|
||||||
|
|
||||||
|
features = features[:, :, :nb_used_features]
|
||||||
|
|
||||||
|
|
||||||
|
# dump models to disk as we go
|
||||||
|
checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.gru_size, '{epoch:02d}'))
|
||||||
|
|
||||||
|
if args.retrain is not None:
|
||||||
|
model.load_weights(args.retrain)
|
||||||
|
|
||||||
|
if quantize or retrain:
|
||||||
|
#Adapting from an existing model
|
||||||
|
model.load_weights(input_model)
|
||||||
|
|
||||||
|
model.save_weights('{}_{}_initial.h5'.format(args.output, args.gru_size))
|
||||||
|
|
||||||
|
loader = PLCLoader(features, batch_size)
|
||||||
|
|
||||||
|
callbacks = [checkpoint]
|
||||||
|
if args.logdir is not None:
|
||||||
|
logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.gru_size)
|
||||||
|
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
|
||||||
|
callbacks.append(tensorboard_callback)
|
||||||
|
|
||||||
|
model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)
|
Loading…
Add table
Add a link
Reference in a new issue