mirror of
https://github.com/xiph/opus.git
synced 2025-05-25 12:49:12 +00:00
Adding feature prediction (totally untested)
This commit is contained in:
parent
42cbb9ed07
commit
c8cbfa7e9b
3 changed files with 327 additions and 0 deletions
173
dnn/training_tf2/train_plc.py
Normal file
173
dnn/training_tf2/train_plc.py
Normal file
|
@ -0,0 +1,173 @@
|
|||
#!/usr/bin/python3
|
||||
'''Copyright (c) 2021-2022 Amazon
|
||||
Copyright (c) 2018-2019 Mozilla
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
'''
|
||||
|
||||
# Train an LPCNet model
|
||||
|
||||
import argparse
|
||||
from plc_loader import PLCLoader
|
||||
|
||||
parser = argparse.ArgumentParser(description='Train a PLC model')
|
||||
|
||||
parser.add_argument('features', metavar='<features file>', help='binary features file (float32)')
|
||||
parser.add_argument('output', metavar='<output>', help='trained model file (.h5)')
|
||||
parser.add_argument('--model', metavar='<model>', default='lpcnet_plc', help='PLC model python definition (without .py)')
|
||||
group1 = parser.add_mutually_exclusive_group()
|
||||
group1.add_argument('--quantize', metavar='<input weights>', help='quantize model')
|
||||
group1.add_argument('--retrain', metavar='<input weights>', help='continue training model')
|
||||
parser.add_argument('--gru-size', metavar='<units>', default=256, type=int, help='number of units in GRU (default 256)')
|
||||
parser.add_argument('--cond-size', metavar='<units>', default=128, type=int, help='number of units in conditioning network (default 128)')
|
||||
parser.add_argument('--epochs', metavar='<epochs>', default=120, type=int, help='number of epochs to train for (default 120)')
|
||||
parser.add_argument('--batch-size', metavar='<batch size>', default=128, type=int, help='batch size to use (default 128)')
|
||||
parser.add_argument('--seq-length', metavar='<sequence length>', default=1000, type=int, help='sequence length to use (default 1000)')
|
||||
parser.add_argument('--lr', metavar='<learning rate>', type=float, help='learning rate')
|
||||
parser.add_argument('--decay', metavar='<decay>', type=float, help='learning rate decay')
|
||||
parser.add_argument('--logdir', metavar='<log dir>', help='directory for tensorboard log files')
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
import importlib
|
||||
lpcnet = importlib.import_module(args.model)
|
||||
|
||||
import sys
|
||||
import numpy as np
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from tensorflow.keras.callbacks import ModelCheckpoint, CSVLogger
|
||||
import tensorflow.keras.backend as K
|
||||
import h5py
|
||||
|
||||
import tensorflow as tf
|
||||
#gpus = tf.config.experimental.list_physical_devices('GPU')
|
||||
#if gpus:
|
||||
# try:
|
||||
# tf.config.experimental.set_virtual_device_configuration(gpus[0], [tf.config.experimental.VirtualDeviceConfiguration(memory_limit=5120)])
|
||||
# except RuntimeError as e:
|
||||
# print(e)
|
||||
|
||||
nb_epochs = args.epochs
|
||||
|
||||
# Try reducing batch_size if you run out of memory on your GPU
|
||||
batch_size = args.batch_size
|
||||
|
||||
quantize = args.quantize is not None
|
||||
retrain = args.retrain is not None
|
||||
|
||||
if quantize:
|
||||
lr = 0.00003
|
||||
decay = 0
|
||||
input_model = args.quantize
|
||||
else:
|
||||
lr = 0.001
|
||||
decay = 2.5e-5
|
||||
|
||||
if args.lr is not None:
|
||||
lr = args.lr
|
||||
|
||||
if args.decay is not None:
|
||||
decay = args.decay
|
||||
|
||||
if retrain:
|
||||
input_model = args.retrain
|
||||
|
||||
def plc_loss(alpha=1.0):
|
||||
def loss(y_true,y_pred):
|
||||
mask = y_true[:,:,-1:]
|
||||
y_true = y_true[:,:,:-1]
|
||||
e = (y_true - y_pred)*mask
|
||||
e_bands = tf.signal.idct(e, norm='ortho')
|
||||
l1_loss = K.mean(K.abs(e) + alpha*K.abs(e_bands))
|
||||
return l1_loss
|
||||
return loss
|
||||
|
||||
def plc_l1_loss():
|
||||
def L1_loss(y_true,y_pred):
|
||||
mask = y_true[:,:,-1:]
|
||||
y_true = y_true[:,:,:-1]
|
||||
e = (y_true - y_pred)*mask
|
||||
l1_loss = K.mean(K.abs(e))
|
||||
return l1_loss
|
||||
return L1_loss
|
||||
|
||||
def plc_band_loss():
|
||||
def L1_band_loss(y_true,y_pred):
|
||||
mask = y_true[:,:,-1:]
|
||||
y_true = y_true[:,:,:-1]
|
||||
e = (y_true - y_pred)*mask
|
||||
e_bands = tf.signal.idct(e, norm='ortho')
|
||||
l1_loss = K.mean(K.abs(e_bands))
|
||||
return l1_loss
|
||||
return L1_band_loss
|
||||
|
||||
opt = Adam(lr, decay=decay, beta_2=0.99)
|
||||
strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy()
|
||||
|
||||
with strategy.scope():
|
||||
model = lpcnet.new_lpcnet_plc_model(rnn_units=args.gru_size, batch_size=batch_size, training=True, quantize=quantize, cond_size=args.cond_size)
|
||||
model.compile(optimizer=opt, loss=plc_loss(alpha=1.), metrics=[plc_l1_loss(), plc_band_loss()])
|
||||
model.summary()
|
||||
|
||||
lpc_order = 16
|
||||
|
||||
feature_file = args.features
|
||||
nb_features = model.nb_used_features + lpc_order
|
||||
nb_used_features = model.nb_used_features
|
||||
sequence_size = args.seq_length
|
||||
|
||||
# u for unquantised, load 16 bit PCM samples and convert to mu-law
|
||||
|
||||
|
||||
features = np.memmap(feature_file, dtype='float32', mode='r')
|
||||
nb_sequences = len(features)//(nb_features*sequence_size)//batch_size*batch_size
|
||||
features = features[:nb_sequences*sequence_size*nb_features]
|
||||
|
||||
features = np.reshape(features, (nb_sequences, sequence_size, nb_features))
|
||||
|
||||
features = features[:, :, :nb_used_features]
|
||||
|
||||
|
||||
# dump models to disk as we go
|
||||
checkpoint = ModelCheckpoint('{}_{}_{}.h5'.format(args.output, args.gru_size, '{epoch:02d}'))
|
||||
|
||||
if args.retrain is not None:
|
||||
model.load_weights(args.retrain)
|
||||
|
||||
if quantize or retrain:
|
||||
#Adapting from an existing model
|
||||
model.load_weights(input_model)
|
||||
|
||||
model.save_weights('{}_{}_initial.h5'.format(args.output, args.gru_size))
|
||||
|
||||
loader = PLCLoader(features, batch_size)
|
||||
|
||||
callbacks = [checkpoint]
|
||||
if args.logdir is not None:
|
||||
logdir = '{}/{}_{}_logs'.format(args.logdir, args.output, args.gru_size)
|
||||
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir)
|
||||
callbacks.append(tensorboard_callback)
|
||||
|
||||
model.fit(loader, epochs=nb_epochs, validation_split=0.0, callbacks=callbacks)
|
Loading…
Add table
Add a link
Reference in a new issue