mirror of
https://github.com/xiph/opus.git
synced 2025-05-17 08:58:30 +00:00
initial commit
This commit is contained in:
commit
c41afe41f0
4 changed files with 162 additions and 0 deletions
31
dnn/train_lpcnet.py
Executable file
31
dnn/train_lpcnet.py
Executable file
|
@ -0,0 +1,31 @@
|
|||
#!/usr/bin/python3
|
||||
|
||||
import lpcnet
|
||||
import sys
|
||||
import numpy as np
|
||||
from keras.optimizers import Adam
|
||||
from ulaw import ulaw2lin, lin2ulaw
|
||||
|
||||
nb_epochs = 10
|
||||
batch_size = 32
|
||||
|
||||
model = lpcnet.new_wavernn_model()
|
||||
model.compile(optimizer=Adam(0.001), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
|
||||
model.summary()
|
||||
|
||||
pcmfile = sys.argv[1]
|
||||
chunk_size = int(sys.argv[2])
|
||||
|
||||
data = np.fromfile(pcmfile, dtype='int16')
|
||||
#data = data[:100000000]
|
||||
data = data/32768
|
||||
nb_frames = (len(data)-1)//chunk_size
|
||||
|
||||
in_data = data[:nb_frames*chunk_size]
|
||||
#out_data = data[1:1+nb_frames*chunk_size]//256 + 128
|
||||
out_data = lin2ulaw(data[1:1+nb_frames*chunk_size]) + 128
|
||||
|
||||
in_data = np.reshape(in_data, (nb_frames, chunk_size, 1))
|
||||
out_data = np.reshape(out_data, (nb_frames, chunk_size, 1))
|
||||
|
||||
model.fit(in_data, out_data, batch_size=batch_size, epochs=nb_epochs, validation_split=0.2)
|
Loading…
Add table
Add a link
Reference in a new issue