Use excitation as input

This commit is contained in:
Jean-Marc Valin 2018-08-24 00:20:10 -04:00
parent 8f6e490ba2
commit c381db5688
3 changed files with 29 additions and 17 deletions

View file

@ -12,6 +12,7 @@ import sys
rnn_units=512 rnn_units=512
pcm_bits = 8 pcm_bits = 8
embed_size = 128
pcm_levels = 2**pcm_bits pcm_levels = 2**pcm_bits
nb_used_features = 38 nb_used_features = 38
@ -42,6 +43,7 @@ class PCMInit(Initializer):
def new_wavernn_model(): def new_wavernn_model():
pcm = Input(shape=(None, 2)) pcm = Input(shape=(None, 2))
exc = Input(shape=(None, 1))
pitch = Input(shape=(None, 1)) pitch = Input(shape=(None, 1))
feat = Input(shape=(None, nb_used_features)) feat = Input(shape=(None, nb_used_features))
dec_feat = Input(shape=(None, 32)) dec_feat = Input(shape=(None, 32))
@ -60,26 +62,27 @@ def new_wavernn_model():
cpcm = pcm cpcm = pcm
cpitch = pitch cpitch = pitch
embed = Embedding(256, 128, embeddings_initializer=PCMInit()) embed = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cpcm = Reshape((-1, 128*2))(embed(pcm)) cpcm = Reshape((-1, embed_size*2))(embed(pcm))
embed2 = Embedding(256, embed_size, embeddings_initializer=PCMInit())
cexc = Reshape((-1, embed_size))(embed2(exc))
cfeat = fconv2(fconv1(feat)) cfeat = fconv2(fconv1(feat))
rep = Lambda(lambda x: K.repeat_elements(x, 160, 1)) rep = Lambda(lambda x: K.repeat_elements(x, 160, 1))
rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True) rnn = CuDNNGRU(rnn_units, return_sequences=True, return_state=True)
rnn_in = Concatenate()([cpcm, rep(cfeat)]) rnn_in = Concatenate()([cpcm, cexc, rep(cfeat)])
md = MDense(pcm_levels, activation='softmax') md = MDense(pcm_levels, activation='softmax')
gru_out, state = rnn(rnn_in) gru_out, state = rnn(rnn_in)
ulaw_prob = md(gru_out) ulaw_prob = md(gru_out)
model = Model([pcm, feat], ulaw_prob) model = Model([pcm, exc, feat], ulaw_prob)
encoder = Model(feat, cfeat) encoder = Model(feat, cfeat)
dec_rnn_in = Concatenate()([cpcm, dec_feat]) dec_rnn_in = Concatenate()([cpcm, cexc, dec_feat])
dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state) dec_gru_out, state = rnn(dec_rnn_in, initial_state=dec_state)
dec_ulaw_prob = md(dec_gru_out) dec_ulaw_prob = md(dec_gru_out)
decoder = Model([pcm, dec_feat, dec_state], [dec_ulaw_prob, state]) decoder = Model([pcm, exc, dec_feat, dec_state], [dec_ulaw_prob, state])
return model, encoder, decoder return model, encoder, decoder

View file

@ -66,7 +66,7 @@ in_data = np.reshape(in_data, (nb_frames*pcm_chunk_size, 1))
out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1)) out_data = np.reshape(data, (nb_frames*pcm_chunk_size, 1))
model.load_weights('wavenet4a3_30.h5') model.load_weights('wavenet4b_30.h5')
order = 16 order = 16
@ -85,19 +85,19 @@ for c in range(1, nb_frames):
period = int(50*features[c, fr, 36]+100) period = int(50*features[c, fr, 36]+100)
period = period - 4 period = period - 4
for i in range(frame_size): for i in range(frame_size):
fexc[0, 0, 0] = iexc + 128 #fexc[0, 0, 0] = iexc + 128
pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0]) pred = -sum(a*pcm[f*frame_size + i - 1:f*frame_size + i - order-1:-1, 0])
fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128 fexc[0, 0, 1] = np.minimum(127, lin2ulaw(pred/32768.)) + 128
p, state = dec.predict([fexc, cfeat[:, fr:fr+1, :], state]) p, state = dec.predict([fexc, iexc, cfeat[:, fr:fr+1, :], state])
#p = p*p #p = p*p
#p = p/(1e-18 + np.sum(p)) #p = p/(1e-18 + np.sum(p))
p = np.maximum(p-0.001, 0) p = np.maximum(p-0.001, 0)
p = p/(1e-5 + np.sum(p)) p = p/(1e-5 + np.sum(p))
iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))-128 iexc[0, 0, 0] = np.argmax(np.random.multinomial(1, p[0,0,:], 1))
pcm[f*frame_size + i, 0] = pred + 32768*ulaw2lin(iexc[0, 0, 0]*1.0) pcm[f*frame_size + i, 0] = pred + 32768*ulaw2lin(iexc[0, 0, 0]-128)
iexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0]/32768) fexc[0, 0, 0] = lin2ulaw(pcm[f*frame_size + i, 0]/32768) + 128
print(iexc[0, 0, 0], 32768*ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred) print(iexc[0, 0, 0], 32768*ulaw2lin(out_data[f*frame_size + i, 0]), pcm[f*frame_size + i, 0], pred)

View file

@ -46,7 +46,7 @@ udata = udata[:nb_frames*pcm_chunk_size]
features = features[:nb_frames*feature_chunk_size*nb_features] features = features[:nb_frames*feature_chunk_size*nb_features]
in_data = np.concatenate([data[0:1], data[:-1]]); in_data = np.concatenate([data[0:1], data[:-1]]);
noise = np.concatenate([np.zeros((len(data)*2//5)), np.random.randint(-2, 2, len(data)//5), np.random.randint(-1, 1, len(data)*2//5)]) noise = np.concatenate([np.zeros((len(data)*2//5)), np.random.randint(-1, 1, len(data)*3//5)])
in_data = in_data + noise in_data = in_data + noise
in_data = np.maximum(-127, np.minimum(127, in_data)) in_data = np.maximum(-127, np.minimum(127, in_data))
@ -78,9 +78,18 @@ in_pitch = np.reshape(pitch/16., (nb_frames, pcm_chunk_size, 1))
in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1)) in_data = np.reshape(in_data, (nb_frames, pcm_chunk_size, 1))
in_data = (in_data.astype('int16')+128).astype('uint8') in_data = (in_data.astype('int16')+128).astype('uint8')
out_data = np.reshape(lin2ulaw((udata-upred)/32768), (nb_frames, pcm_chunk_size, 1)) out_data = lin2ulaw((udata-upred)/32768)
in_exc = np.concatenate([out_data[0:1], out_data[:-1]]);
out_data = np.reshape(out_data, (nb_frames, pcm_chunk_size, 1))
out_data = np.maximum(-127, np.minimum(127, out_data)) out_data = np.maximum(-127, np.minimum(127, out_data))
out_data = (out_data.astype('int16')+128).astype('uint8') out_data = (out_data.astype('int16')+128).astype('uint8')
in_exc = np.reshape(in_exc, (nb_frames, pcm_chunk_size, 1))
in_exc = np.maximum(-127, np.minimum(127, in_exc))
in_exc = (in_exc.astype('int16')+128).astype('uint8')
features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features)) features = np.reshape(features, (nb_frames, feature_chunk_size, nb_features))
features = features[:, :, :nb_used_features] features = features[:, :, :nb_used_features]
pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1)) pred = np.reshape(pred, (nb_frames, pcm_chunk_size, 1))
@ -94,8 +103,8 @@ in_data = np.concatenate([in_data, pred], axis=-1)
# f.create_dataset('data', data=in_data[:50000, :, :]) # f.create_dataset('data', data=in_data[:50000, :, :])
# f.create_dataset('feat', data=features[:50000, :, :]) # f.create_dataset('feat', data=features[:50000, :, :])
checkpoint = ModelCheckpoint('wavenet4a3_{epoch:02d}.h5') checkpoint = ModelCheckpoint('wavenet4b_{epoch:02d}.h5')
#model.load_weights('wavernn1c_01.h5') #model.load_weights('wavernn1c_01.h5')
model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) model.compile(optimizer=Adam(0.001, amsgrad=True, decay=2e-4), loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy'])
model.fit([in_data, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint]) model.fit([in_data, in_exc, features], out_data, batch_size=batch_size, epochs=30, validation_split=0.2, callbacks=[checkpoint])