mirror of
https://github.com/xiph/opus.git
synced 2025-06-03 00:57:43 +00:00
renames the libcelt/ directory to celt/
This commit is contained in:
parent
92675068a4
commit
c37499090b
75 changed files with 93 additions and 110 deletions
226
celt/mathops.h
Normal file
226
celt/mathops.h
Normal file
|
@ -0,0 +1,226 @@
|
|||
/* Copyright (c) 2002-2008 Jean-Marc Valin
|
||||
Copyright (c) 2007-2008 CSIRO
|
||||
Copyright (c) 2007-2009 Xiph.Org Foundation
|
||||
Written by Jean-Marc Valin */
|
||||
/**
|
||||
@file mathops.h
|
||||
@brief Various math functions
|
||||
*/
|
||||
/*
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions
|
||||
are met:
|
||||
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
||||
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifndef MATHOPS_H
|
||||
#define MATHOPS_H
|
||||
|
||||
#include "arch.h"
|
||||
#include "entcode.h"
|
||||
#include "os_support.h"
|
||||
|
||||
/* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
|
||||
#define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
|
||||
|
||||
unsigned isqrt32(opus_uint32 _val);
|
||||
|
||||
#ifndef FIXED_POINT
|
||||
|
||||
#define PI 3.141592653f
|
||||
#define celt_sqrt(x) ((float)sqrt(x))
|
||||
#define celt_rsqrt(x) (1.f/celt_sqrt(x))
|
||||
#define celt_rsqrt_norm(x) (celt_rsqrt(x))
|
||||
#define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
|
||||
#define celt_rcp(x) (1.f/(x))
|
||||
#define celt_div(a,b) ((a)/(b))
|
||||
#define frac_div32(a,b) ((float)(a)/(b))
|
||||
|
||||
#ifdef FLOAT_APPROX
|
||||
|
||||
/* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
|
||||
denorm, +/- inf and NaN are *not* handled */
|
||||
|
||||
/** Base-2 log approximation (log2(x)). */
|
||||
static inline float celt_log2(float x)
|
||||
{
|
||||
int integer;
|
||||
float frac;
|
||||
union {
|
||||
float f;
|
||||
opus_uint32 i;
|
||||
} in;
|
||||
in.f = x;
|
||||
integer = (in.i>>23)-127;
|
||||
in.i -= integer<<23;
|
||||
frac = in.f - 1.5f;
|
||||
frac = -0.41445418f + frac*(0.95909232f
|
||||
+ frac*(-0.33951290f + frac*0.16541097f));
|
||||
return 1+integer+frac;
|
||||
}
|
||||
|
||||
/** Base-2 exponential approximation (2^x). */
|
||||
static inline float celt_exp2(float x)
|
||||
{
|
||||
int integer;
|
||||
float frac;
|
||||
union {
|
||||
float f;
|
||||
opus_uint32 i;
|
||||
} res;
|
||||
integer = floor(x);
|
||||
if (integer < -50)
|
||||
return 0;
|
||||
frac = x-integer;
|
||||
/* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
|
||||
res.f = 0.99992522f + frac * (0.69583354f
|
||||
+ frac * (0.22606716f + 0.078024523f*frac));
|
||||
res.i = (res.i + (integer<<23)) & 0x7fffffff;
|
||||
return res.f;
|
||||
}
|
||||
|
||||
#else
|
||||
#define celt_log2(x) ((float)(1.442695040888963387*log(x)))
|
||||
#define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FIXED_POINT
|
||||
|
||||
#include "os_support.h"
|
||||
|
||||
#ifndef OVERRIDE_CELT_ILOG2
|
||||
/** Integer log in base2. Undefined for zero and negative numbers */
|
||||
static inline opus_int16 celt_ilog2(opus_int32 x)
|
||||
{
|
||||
celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
|
||||
return EC_ILOG(x)-1;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef OVERRIDE_CELT_MAXABS16
|
||||
static inline opus_val16 celt_maxabs16(opus_val16 *x, int len)
|
||||
{
|
||||
int i;
|
||||
opus_val16 maxval = 0;
|
||||
for (i=0;i<len;i++)
|
||||
maxval = MAX16(maxval, ABS16(x[i]));
|
||||
return maxval;
|
||||
}
|
||||
#endif
|
||||
|
||||
/** Integer log in base2. Defined for zero, but not for negative numbers */
|
||||
static inline opus_int16 celt_zlog2(opus_val32 x)
|
||||
{
|
||||
return x <= 0 ? 0 : celt_ilog2(x);
|
||||
}
|
||||
|
||||
opus_val16 celt_rsqrt_norm(opus_val32 x);
|
||||
|
||||
opus_val32 celt_sqrt(opus_val32 x);
|
||||
|
||||
opus_val16 celt_cos_norm(opus_val32 x);
|
||||
|
||||
static inline opus_val16 celt_log2(opus_val32 x)
|
||||
{
|
||||
int i;
|
||||
opus_val16 n, frac;
|
||||
/* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
|
||||
0.15530808010959576, -0.08556153059057618 */
|
||||
static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
|
||||
if (x==0)
|
||||
return -32767;
|
||||
i = celt_ilog2(x);
|
||||
n = VSHR32(x,i-15)-32768-16384;
|
||||
frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
|
||||
return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
|
||||
}
|
||||
|
||||
/*
|
||||
K0 = 1
|
||||
K1 = log(2)
|
||||
K2 = 3-4*log(2)
|
||||
K3 = 3*log(2) - 2
|
||||
*/
|
||||
#define D0 16383
|
||||
#define D1 22804
|
||||
#define D2 14819
|
||||
#define D3 10204
|
||||
/** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
|
||||
static inline opus_val32 celt_exp2(opus_val16 x)
|
||||
{
|
||||
int integer;
|
||||
opus_val16 frac;
|
||||
integer = SHR16(x,10);
|
||||
if (integer>14)
|
||||
return 0x7f000000;
|
||||
else if (integer < -15)
|
||||
return 0;
|
||||
frac = SHL16(x-SHL16(integer,10),4);
|
||||
frac = ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
|
||||
return VSHR32(EXTEND32(frac), -integer-2);
|
||||
}
|
||||
|
||||
opus_val32 celt_rcp(opus_val32 x);
|
||||
|
||||
#define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
|
||||
|
||||
opus_val32 frac_div32(opus_val32 a, opus_val32 b);
|
||||
|
||||
#define M1 32767
|
||||
#define M2 -21
|
||||
#define M3 -11943
|
||||
#define M4 4936
|
||||
|
||||
/* Atan approximation using a 4th order polynomial. Input is in Q15 format
|
||||
and normalized by pi/4. Output is in Q15 format */
|
||||
static inline opus_val16 celt_atan01(opus_val16 x)
|
||||
{
|
||||
return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
|
||||
}
|
||||
|
||||
#undef M1
|
||||
#undef M2
|
||||
#undef M3
|
||||
#undef M4
|
||||
|
||||
/* atan2() approximation valid for positive input values */
|
||||
static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
|
||||
{
|
||||
if (y < x)
|
||||
{
|
||||
opus_val32 arg;
|
||||
arg = celt_div(SHL32(EXTEND32(y),15),x);
|
||||
if (arg >= 32767)
|
||||
arg = 32767;
|
||||
return SHR16(celt_atan01(EXTRACT16(arg)),1);
|
||||
} else {
|
||||
opus_val32 arg;
|
||||
arg = celt_div(SHL32(EXTEND32(x),15),y);
|
||||
if (arg >= 32767)
|
||||
arg = 32767;
|
||||
return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
|
||||
}
|
||||
}
|
||||
|
||||
#endif /* FIXED_POINT */
|
||||
#endif /* MATHOPS_H */
|
Loading…
Add table
Add a link
Reference in a new issue